跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 09:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許育豪
研究生(外文):Yu-Hao Hsu
論文名稱:結合通道估計之複亂碼追蹤迴路在衰褪環境下的性能分析
論文名稱(外文):Aanlysis of Complex Code Tracking with Channel Estimation in Bandlimited Rayleigh Fading Channels
指導教授:蘇育德蘇育德引用關係
指導教授(外文):Yu T. Su
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:89
語文別:英文
論文頁數:62
中文關鍵詞:直接序列展頻分碼多工亂碼追蹤複徑衰褪通道估計
外文關鍵詞:direct sequence spread spectrumcdma2000code trackingBL-DDLLRayleigh fadingchannel estimationWalsh channelizationRAKE receiver
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文探討直接序列展頻(DS/SS)寬頻分碼多工(CDMA)信號之數位同調複亂碼追蹤迴路(DDLL)在高斯雜訊通道(AWGN)以及複徑衰褪(Rayleigh Fading)環境下之性能分析。在複徑衰褪環境下,犛耙式接收器(RAKE Receiver)的每一個分支(finger)各用一獨立的追蹤迴路來負責亂碼同步。因為同調的要求,我們另需有通道估測線路來提供該路徑相位的資訊。我們應用了簡單的低通濾波器來估計衰褪信號、以便更正解展頻後的信號之相位。
我們所考慮的寬頻分碼多工系統為cdma2000上行鏈路系統(Reverse Link)。其中,各個上行通道經由不同的Walsh Code而正交化。我們除了可利用其中一參考通道(Pilot Channel)信號分析同調複亂碼追蹤迴路性能之外,也可運用其他載有資訊或控制信號之通道來改善追蹤的性能。分析與模擬的結果顯示無論是只用參考通道或加上其他的平行正交通道我們提出的同調複亂碼追蹤迴路都具體可行,而後者也的確可提升不少性能。此外,我們也發現,頻寬限制(Band-limitation)效應造成通道間不可忽略之干擾,尤其在高訊雜比(SNR)時,碼追蹤之性能提升更因而受限。
This thesis investigates the structures and performance of coherent bandlimited digital delay-locked loops (BL-DDLL) for complex-spread direct sequence spread spectrum (DS/SS) signals in either AWGN and Rayleigh fading channels. These loops use either the pilot channel alone or the pilot channel plus other data or control channels that are separated by orthogonal Walsh channelization codes.
We consider a RAKE receiver with each RAKE finger suffers from independent Jakes flat Rayleigh fading. Tracking in the presence fading necessitates an auxiliary circuit to generate a channel estimate in real-time. We suggest a simple channel estimate derived from low-pass-filtering the de-spread pilot channel signal. The low pass filter is used to approximate the optimal Wiener filter for estimating the embedded low-pass fading process. The resulting loop actually performs code phase and carrier phase estimates simultaneously. Computer simulation is carried out to validate our analysis on the root-mean-squared (rms) tracking error (jitter) performance of various code tracking schemes. Numerical results also point out the limitation imposed by the self-interference and demonstrate that impressive performance improvement is attained by using non-pilot channel signal in a decision-directed manner.
1 Introduction
2 Coherent Complex Code Tracking in AWGN Channels
2.1 Band-Limited Signal Description
2.2 Digital Delay-Lock Discriminator Analysis
2.3 Steady-State Rms Chip Timing Jitter Analysis
2.4 Simulation Results and Discussions
3 Coherent Complex Code Tracking in Rayleigh Fading Channels
3.1 System Description
3.1.1 Channel Model
3.1.2 Reception Model
3.1.3 Channel Estimation
3.2 Steady-State Rms Chip Timing Error Analysis
3.3 Simulation Results and Comparisons
4 Conclusions
A Derivation of the Average Autocorrelation Function of the Loop Error Signal in an AWGN Channel
B Derivation of the First and Second Moments of the Error Indicator in Rayleigh Fading
C Derivations of the Average Autocorrelation Functions in a Rayleigh Fading Channel
[1] H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication Receivers: Synchronization, Channel Estimation, and Signal Processing, New York: John Wiely & Sons, 1997.
[2] H. G. Proakis, Digital Communications, New York: McGraw-Hill, 3rd Ed., 1995.
[3] Theodore S. Rappaport, Wireless Communication: Principles & Practice, New Jersey: Prentice Hall, 1996.
[4] W. C. Jakes, Jr., Microwave Mobile Communications, New York: John Wiely & Sons, 1974.
[5] C. M. Chie, Y. T. Su, W. C. Lindsey and J. Koukos, "Autonomous integrated receive system requirements definition," vol. III, Tech. Report, TR-0884-8211, LinCom
Corp., 1984.
[6] M. Y. Rhee, CDMA Cellular Mobile Communications & Network Security, New Jersey: Prentice Hall, 1998.
[7] A. Papoulis, Probability, Random Variables and Stochastic Process, New York:
McGraw-Hill, 3rd Ed., 1991.
[8] P. A. Bello, \Characterization of Randomly Time-Variant Linear Channels," IEEE Trans. Commun.Syst., vol. 11, pp.360, 1963.
[9] J. K. Holmes, "Coherent spread Spectrum Systems," New York: John Wiely & Sons, 1982.
[10] F. Ling, "Optimal Reception, Performance Bound, and Cutoff Rate Analysis of References-Assisted Coherent CDMA Communications with Applications,"IEEE
Trans. Commun., vol. 47, NO. 10, pp.1583-1592, Oct. 1999.
[11] R. D. Gaudenzi, M. Luise,"Decision-Directed Coherent Delay-Lock Tracking Loop for DS-Spread-Spectrum Signals," IEEE TranS. Comm., vol. 39, no. 5, pp. 758-765, May, 1991.
[12] M, Sawahashi, F. Adachi, H. Yamamoto, "Coherent Delay-Locked Code Tracking Loop Using Time-Multiplexed Pilot for DS-CDMA Mobile Ration," IEICE Trans. Comm. vol. E81-B, No. 7, Jul. 1998.
[13] R. D. Gaudenzi, M. Luise, R. Viola, "A Digital Chip Timing Recovery Loop for Band-Limited Direct-Sequence Spread-Spectrum Signals," IEEE Tran. Comm. vol. 41, No. 11, Nov. 1993.
[14] R. D. Gaudenzi, "Direct-Sequence Spread-Spectrum Chip Tracking in the Presence of Unresolvable Multipath Components," Tran. Veh. Tech., vol. 48, No. 5, Sep. 1999.
[15] W.-H. Sheen, C.-H. Tai, "A Noncherent Tracking Loop with Diversity and Multipath Interference Cancellation for Direct-Sequence Spread-Spectrum Systems," IEEE Trans. Comm., vol. 46, No.11, Nov 1998.
[16] K. Laire, N. Whinnett, S. Buljore, "A Peak-to-Average Power Reduction Method for Third Generation CDMA Reverse Links", IEEE Vehicular Technology Conf., Vol. 1, pp. 551-555, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top