跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.104) 您好!臺灣時間:2025/12/03 14:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝有良
研究生(外文):SIE,YOU-LIANG
論文名稱:三維潰壩波與多個結構物交互作用之研究
論文名稱(外文):Three-dimensional Interaction of Dam-break waves and Multi-structures
指導教授:羅德章羅德章引用關係
指導教授(外文):LO,DER-CHANG
口試委員:廖清標蔡立宏魏志強
口試委員(外文):LIAO,CHING-BIAOTSAI,LI-HUNGWEI,CHIH-CHIANG
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:海事資訊科技研究所
學門:運輸服務學門
學類:航海學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:86
中文關鍵詞:潰壩波多個結構體流體體積法自由液面流場
外文關鍵詞:dam-break wavemulti-structuresvolume-of-fluidin tandem arrangementsfree-surface flows
相關次數:
  • 被引用被引用:2
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的建立數值模式求解納維爾-史托克斯方程式,同時應用該模式於潰壩波與結構物交互作用。本文採用控制體積的有限差分法來計算潰壩波通過多個結構物的水動力分析,為了克服碎波問題,應用流體體積法來追蹤自由液面水位。本模式應用於部分潰壩波通過3個串聯排列的圓柱,同時考慮上游入流流量每秒為10立方公尺的流量流入蓄水池,部分潰壩波通過3個串聯排列的圓柱,潰壩波通過3個串聯排列的圓柱的受力分析也在本文呈現。最後,本模式應用於潰壩波與移動物體的交互作用。結果顯示本文採用的數值方法可精準的模擬三維自由液面之流場。
The purpose of present study aims at the establishment of a numerical model for the solution of Navier-Stokes equations and its application to the interaction of dam-break wave and multi-structures. The control volume finite difference scheme was used to calculate the hydrodynamic performances of dam-break flow through several structures. To overcome the difficulty associated with solving the wave breaking, a volume-of-fluid method was used to track the elevation of free-surface. The present study naturally gives more reasonable results on problems including the partial dam-break flow over three cylinders in tandem arrangements, and interaction between a dam-break surge and three circular cylinders with the consideration of inflow equal to be 10 m3/s. The times variation of force calculation of three cylinders is performed during the interaction of dam-break wave and structures. Finally, the mode is used to the moving objects problem with dam-break flow. These results obtained are demonstrated to the application of the free-surface flows by using the propsed numerical model.
中文摘要 1
Abstract 2
致謝 3
目錄 4
圖目錄 6
表目錄 9
符號說明 10
第一章 緒論 12
1-1 前言 12
1-2 研究動機與目的 13
1-3 文獻回顧 14
1-4 本文架構 19
第二章 理論架構 20
2-1 理論簡介 20
2-2 Navier-Stokes 之控制方程式 20
2-3 流體體積法(Volume of fluid) 22
2-4 數值方法 23
第三章 模擬方法與步驟 26
3-1 模擬軟體簡介 26
3-2 數值模擬前處理 27
3-2-1 模擬流程 27
3-2-2 模型建置 28
3-2-3模擬時間與物理條件設定 29
3-2-4 規劃模擬方案 30
3-2-5 網格設置 33
3-2-6 邊界條件設定 34
3-3 數值模擬後處理 37
第四章 結果分析與討論 40
4-1潰壩波對三縱向排列圓柱之受力分析(case1-1與case1-2) 40
4-1-1 圓柱半徑 0.5 m 速度大小水位變化圖 42
4-1-2 圓柱半徑0.5 m結構物之壓力和速度向量水位變化 45
4-1-3 圓柱半徑 1 m 速度大小水位變化圖 48
4-1-4 圓柱半徑1 m結構物之壓力和速度向量水位變化 51
4-2 增加入流條件下的潰壩波對結構物之受力分析(case2-1與case2-2) 55
4-2-1 圓柱半徑 0.5 m 速度大小水位變化圖 57
4-2-2 圓柱半徑0.5 m結構物之壓力和速度向量水位變化 60
4-2-3 圓柱半徑 1 m 速度大小水位變化圖 63
4-2-4 圓柱半徑1 m結構物之壓力和速度向量水位變化 66
4-3移動物體之流動分析 70
4-3-1 圓柱半徑 1 m 速度大小水位變化圖 70
4-4 潰壩受力綜合比較分析 75
4-4-1 case1-1、case1-2 結構物之受力變化圖 75
4-4-2 case2-1、case2-2 結構物之受力變化圖 77
第五章 結論與建議 79
5-1 結論 79
5-2建議 79
參考文獻 81


1.Alcrudo, F., and Garcia-Navarro P.(1993),“A high-resolution Godunove-type scheme in finite volume for the 2D shallow-water equation”, ASCE Journal of Hydraulic Engineering, Vol. 144, pp. 689-706.
2.Brufau, P., and García-Navarro P.(2000),“Two-dimensional dam-break flow simulation”, Methods Fluids, Vol. 33, pp. 35-57.
3.Fennema, R. T. and Chaudhry M. H.(1990),“Explicit methods for 2-D transient free-surface flows”, ASCE Journal of Hydraulic Engineering 116, pp. 1013-1014.
4.FLOW-3D User Manual.(2007), Flow Science Inc.
5.Fraccarollo, L. and Toro E. F.(1995),“Experimental and numerical assessment of the shallow water model for two-dimensional dam-break problems”, Journal of hydraulic research, Vol. 33, pp. 843-864.
6.Garcia-Navarro, P., Alcrudo F., and Saviron J. M.(1992),“1-D open channel flow simulation using TVD-McCormack scheme”, ASCE Journal of Hydraulic Engineering, Vol. 118, pp. 1359-1372.
7.Garcia-Navarro, P., Alcrudo F., and Saviron J. M.(1992),“1-D open channel flow simulation using TVD-McCormack scheme”, ASCE Journal of Hydraulic Engineering, Vol. 118, pp. 1359-1372.
8.Harten, A.(1983),“High resolution scheme for hyperbolic conservation laws” , Journal of Computational Physics, Vol. 49, pp. 357-393.
9.Hieu, K. and Tanimoto K. (2006), “Verification of a VOF-based two-phase flow model for wave breaking and wave–structure interactions”, Ocean Engineering, Vol. 33, pp. 1565-1588.
10.Hirt C. W., and Nichols B. D.,( 1981) , “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Computational Physics, 39, pp. 201- 225.
11.J. D. Ramsden, “Tsunamis: Forces on a Vertical Wall Caused by Long Waves, Bores, and Surges on a Dry Bed”, Ph.D. dissertation, California Institute of Technology, 1993.
12.Katopodes, N. D. and Wu C. T.,” Explicit Computation of Discontinuous Channel Flow,” Journal of the Hydraulic Division,ASCE, Vol. 112(6), pp.456-475, (1986) .
13.Ketabdari, M. J., Nobari M. R. H., and Larmaei M. M.(2008) , “Simulation of waves group propagation and breaking in coastal zone using a Navier-Stokes solver with an improved VOF free surface treatment”, Applied Ocean Research, Vol. 30, pp. 130-143.
14.Kothe D. B. and Mjolsness R. C., (1992) , “A New Model for Incompressible Flows with Free Surfaces,” AIAA Journal, 30, pp. 2694-2700 .
15.Lafaurie B., Nardone C., Scardovelli R., and Zaleski S., (1994) , “Modelling Merging and Fragmentation in Multiphase Flows with SURFER, ” Journal of Computational Physics, 113, pp. 134-147.
16.Lemos C. M., (1996) , “Higher-Order Schemes for Free-Surface Flows with Arbitrary Configurations,” International Journal for Numerical Methods in Fluids, 23, pp. 545-566.
17.Lohner, R., Yang C., and Onate E.(2006), “On the simulation of flows with violent free surface motion”, Comput. Methods Appl, Mech, Engrg, Vol. 195, pp. 5597-5620.
18.Lohner, R., Yang C., and Onate E.(2007), “Simulation of flows withviolent free surface motion and moving objects using unstructured grids”, Int. J. Numer. Meth. Fluids, Vol. 53, pp.1315-1338.
19.Nujic, M.(1995),“Efficient implementation of non-oscillatory schemes for the computation of free-surface flows”, J Hydr Res, Delft, The Netherlands, Vol. 33(1), pp. 101-111.
20.Rao, V. S. and Latha G.(1992),“A slope modification method for shallow water equations”, Int J Numer Methods in Fluids, Vol. 14, pp. 189-196.
21.Roe, P. L.(1981),“Approximate Riemann solvers, parameter vectors, and difference scheme”, Journal of Computational Physics, Vol. 43: 357-372.
22.Rudman M., (1997) , “Volume-Tracking Methods for Interfacial Flow Calculations, ’’ International Journal for Numerical Methods in Fluids, 24, pp. 671-691.
23.S. Nakamura and Y. Tsuchiya, (1973) “On shock pressure of surge on a wall” Bulletin of the Disaster Prevention Research Institute, Vol. 23, NO. 12, pp. 47-58,.
24.Savic, L. and Holly F. M. (1993),“Dam-break food waves computed by modified gonunov method ”, J Hydr, Res, Delft, The Netherlands ,Vol. 31 (2), pp. 187-204.
25.Stoker, J. J.(1957),“Water waves”, Interscience Publishers.
26.T. R. Wu and P. L. F. Liu, “(2009) a. A large eLESy simulation model for tsunami and runup generated by landslides”, in Advances in Coastal and Ocean Engineering, Vol. 10 (ed. by Liu, P.L.-F., Yeh, H. and Synolakis, C.), World Scientific Publishing,
27.T. R. Wu and P. L. F. Liu, (2009) b “Numerical study on the three-dimensional dam-break bore interacting with a square cylinder”, in Nonlinear Wave Dynamics (ed. Lynett, P.),World Scientific Publishing,.
28.Toro, E. F., “Riemann Problems and the WAF Method for Solving the Two-Dimensional Shallow Water Equations, (1992) ” Physical Sciences and Engineering, Vol. 338, Issue 1649, pp.43-68,.
29.Toro, E. F.,( 2001) , “Shock-Capturing Methods for Free-Surface Shallow Flows,” Manchester Metropolitan University, UK.
30.Tseng, M. H. and Chu C. R., (2000) ” The simulation of Dam-Break flows by an improved predictor-corrector TVD scheme,” Advances in Water esources, Vol. 23, pp.637-643.
31.Valiani, A., Caleffi V., and Zanni A. (2002),“Case Study: Malpasset dam-Break simulation using a two-dimensional finite volume method”. Journal of Hydraulic Engineering, ASCE, Vol.128, pp. 460-472.
32.Van Leer, B.(1977),“Towards the ultimate conservative difference scheme Ⅲ. Upstream-centered finite difference schemes for ideal compressible flow”, Journal of Computational Physics, Vol. 23, pp. 263-275.
33.Vincent, S., Randrianarivelo T. N., Pianet G., and Caltagirone J. P.(2007) , “Local penalty methods for flows interacting with moving solids at high Reynolds numbers”, Computers & Fluids, Vol. 36, pp. 902–913.
34.Wang, J. S., Ni H. G., and He Y. S.(2000),“Finite-difference TVD scheme for computation of dam-break problems”, ASCE Journal of Hydraulic Engineering. Vol. 126, No.4, pp. 253–262.
35.Y. Fukui, M. Nakamura, H. Shiraishi, and Y. Sasaki, (1963) a “Hydraulic study on tsunami”, Coastal Engineering, Japan,Vol. 6, pp. 67–82.
36.Zhang, Q., and Liu P. L. F.(2008), “A numerical study of swash flows generated by bores”, Coastal Engineering, Vol. 55, pp. 1113-1134.
37.Zhao, D. H., Shen H. W., Lai J. S., and Tabios G. Q.(1996),“Approximate Riemann Solvers in FVM for 2D Hydraulic Shock Wave Modeling”, Journal of Hydraulic Engineering, ASCE, Vol. 122(12), pp. 692-702.
38.魏妙珊(2009) , 「三維海嘯湧潮對近岸結構物之影響」 , 國立中央大學水文與海洋科學研究所碩士論文。
39.陳俊合 (2012) , 「FLOW-3D應用於孔隙結構物消波特性之研究」 ,國立中山大學海洋環境及工程學系研究所碩士論文。
40.游景皓(2005) , 「以等位函數法模擬三維潰壩流」 , 逢甲大學水利工程學系碩士論文。
41.林英泰 (2004),「複雜地形潰壩問題之數值模擬」,逢甲大學水利工程學系碩士論文。
42.胡俊維 (2012) , 「水工結構物週邊三維流場之數值模擬」 , 逢甲大學水利工程與資源保育學系碩士論文。
43.鄭喆宇 (2012) , 「以三維數值模擬探討海嘯與結構物之交互作用」 , 國立中央大學水文與海洋科學研究所碩士論文。
44.吳姿潓 (2011) , 「計算流力在潰壩波與結構物互制之研究」,國立高雄海洋科技大學海事學院海事資訊科技研究所碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top