跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊晃祥
研究生(外文):Huang-Shung Yang
論文名稱:聚己內酯在超臨界二氧化碳流體中之固態聚合反應及聚己內酯/聚氯乙烯摻合體相形態變化之研究
論文名稱(外文):Solid State Polymerization of Polycaprolactone and Phase Behavior of Polycaprolactone/Poly(vinyl chloride) Blends in Supercritical CO2 Fluids
指導教授:謝永堂謝永堂引用關係
指導教授(外文):Yeong-Tarng Shieh
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業化學與災害防治研究所碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:162
中文關鍵詞:聚己內酯固態聚合轉酯化反應零角度散射聚氯乙烯電子密度
外文關鍵詞:polycaprolactonesolid-state polymerizationtransesterification reactionszero-angle scatteringpoly(vinyl chloride)electron density
相關次數:
  • 被引用被引用:2
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究包含兩個部分,第一部分旨在探討以超臨界CO2流體進行聚己內酯(PCL)固態聚合及其對結晶形態之影響。結果顯示,PCL具有羰基(C=O)之特性基團與CO2存在著交互作用力關係,兩者具有互溶性,而且CO2流體對PCL之溶解能力受控於溫度、壓力及含浸時間的影響。在固定溫度(35℃)下,壓力增加可提高互溶能力,且隨著時間增加而增加,當超過60min時CO2分子溶解於PCL之量趨於飽和。超臨界CO2流體並可使PCL進行固態聚合反應(會提高分子量)及轉酯化反應(會降低分子量)。結果顯示,在CO2壓力36 atm下PCL發生較多的固態聚合反應;在壓力84及304 atm下除了進行固態聚合反應外也會進行轉酯化反應。此外,溶於超臨界CO2流體之PCL,在CO2洩壓過程會進行二階段結晶行為。由SAXS分析所獲得Lorentz- corrected圖譜上出現零角度散射(Zero-angle scattering),表示PCL lamella中之無定形PCL會受到CO2分子的作用而被排擠到Interfibrillar 間,並且形成不均勻性區域塊(Morphous domain)。
第二部分則是探討超臨界CO2流體對聚己內酯(PCL)/聚氯乙烯(PVC)摻合體相形態之影響,由DSC測得熔點下降以及DMA測得單一玻璃轉移溫度,顯示此摻合體為一相容系統。藉由SAXS之分析發現:PCL/PVC摻合體之結晶層厚(lc)與非結晶層厚(la)隨著PVC組成增加而降低,使其φS<1,此乃PVC的稀釋結晶效應及被排擠到Interlamellar區域外之故。經超臨界CO2流體處理後,則PVC被排擠的距離愈遠,形成更大的不均勻區塊,此現象可由Lorentz- corrected圖譜上出現Zero-angle scattering強度變大而獲得證實。此外,摻合體受到超臨界CO2流體的作用會導致結晶與非結晶區域間之電子密度差異增加,使得摻合體之相形態發生變化。
This report includes two parts. The first part presents results on the investigated of solid-state polymerization and phase behavior of polycaprolactone (PCL) in supercritical carbon dioxide fluids (SCF CO2). PCL is found to be miscible with SCF CO2, the miscibility depending on CO2 conditions, via interactions between the carbonyl groups of PCL and CO2. In addition to solid state polymerizations, which could increase molecular weights of PCL, transesterification reactions of PCL are found as well, decreasing molecular weights of PCL. The extent of solid state polymerizations and transesterification reactions are dependent upon CO2 conditions, with the 36-atm CO2 giving a dominant solid state polymerization while 84-atm and 304-atm CO2 giving both reactions. PCL dissolved in SCF CO2 can perform a recrystallization during depressurizing of CO2 and exhibits a disordered structure of lamellar stacks as evidenced by zero-angle scattering from SAXS measurements.
The second part presents results on the effects of SCF CO2 on the phase behavior of PCL/PVC blends. Prior to SCF CO2 treatments, DSC and DMA data demonstrate that PCL/PVC blends in this study are compatible blends. SAXS data demonstrate that thickness of both crystalline layer and amorphous layer in the lamellar stacks increase with increasing PVC contents in the blends. The phase segregation distance of PVC increases with increasing PVC contents in the PCL/PVC blends during crystallization of PCL. For a given blend composition, the segregation distance of PVC during recrystallization of PCL after SCF CO2 treatments is relatively high as compared with the blend before SCF CO2 treatments.
中文摘要 --------- i
英文摘要 --------- iii
誌謝-------------- v
目錄-------------- vi
表目錄------------ ix
圖目錄------------ xi
符號說明 --------- xv
第一章 聚己內酯在超臨界CO2流體之固態聚合反應及結晶形態變化
之研究
一.緒論-----------------------------------------1
1 . 1 前言----------------------------------1
1 . 2 文獻回顧------------------------------4
1 . 2. 1 二氧化碳溶解量之文獻回顧-----------4
1 . 2. 2 固態聚合之文獻回顧-----------------7
1 . 2. 3 聚己內酯(PCL)結晶動力學之文獻回顧--12
1 . 3 研究目的與動機------------------------13
二.理論-----------------------------------------15
2 . 1 超臨界流體----------------------------15
2 . 1. 1 何謂超臨界流體---------------------15
2 . 1. 2 超臨界流體之特性-------------------16
2 . 1. 3 為何選用超臨界流體CO2--------------19
2 . 1. 4 高分子含CO2之基礎特性--------------20
2 . 2. 固態聚合-----------------------------21
2 . 2. 1 何謂固態聚合-----------------------21
2 . 3 結晶熱力學----------------------------23
2 . 3. 1 平衡熔點與熔點---------------------23
2 . 3. 2 結晶性高分子摻合體的平衡熔點-------27
2 . 4 結晶動力學----------------------------29
2 . 4. 1 結晶動力學理論---------------------29
2 . 4. 2 球晶成長動力學理論-----------------31
2 . 5 X-ray相關理論-------------------------35
2 . 5. 1 X光的產生--------------------------35
2 . 5. 2 X射線管----------------------------35
2 . 5. 3 布拉格定律(Bragg’s Law) ----------37
2 . 5. 4 X-ray繞射--------------------------37
2 . 6 小角度X-光散射(SAXS)簡介--------------39
2 . 6. 1 SAXS基本原理-----------------------39
2 . 6. 2 相關函數(Correlation function)分析-40
2 . 6. 3 低限q值的近似----------------------44
2 . 6. 4 無限大q值的近似--------------------46
三.實驗部分-------------------------------------49
3 . 1 實驗藥品------------------------------49
3 . 2 實驗設備------------------------------49
3 . 3 實驗方法------------------------------51
3 . 3. 1 試樣之製備-------------------------51
3 . 3. 2 試樣之分析-------------------------52
四.結果與討論-----------------------------------54
4 . 1 超臨界CO2流體對聚己內酯(PCL)之溶解行為-54
4 . 2 PCL在超臨界CO2流體中之固態聚合反應-----59
4 . 3 超臨界CO2流體對聚己內酯(PCL)結晶行為之影響---71
4 . 3. 1等溫程序 PCL在不同壓力CO2下之結晶行為-------71
4 . 3. 2非等溫程序 PCL在不同壓力CO2下之結晶行為-----73
4 . 3. 3PCL分子量效應在超臨界CO2流體下之結晶行為----75
4 . 4 以SAXS測定PCL經超臨界CO2流體處理前後之結晶
形態變化------------------------------------------------83
五.結論-----------------------------------------97
六.參考文獻-------------------------------------98
第二章 超臨界CO2流體對PCL/PVC摻合體相形態之影響
一.緒論-----------------------------------------102
1 . 1 前言----------------------------------102
1 . 2 文獻回顧------------------------------105
二.理論-----------------------------------------109
2 . 1 摻合體之相容性------------------------109
2 . 1. 1 聚摻合原理-------------------------109
2 . 1. 2 聚摻合體之親合性-------------------109
2 . 1. 3 研究摻合體相容的方法---------------112
2 . 1. 4 玻璃轉移點(Tg)法-------------------112
2 . 2 聚摻合體的結晶形態--------------------114
2 . 3 動態機械分析-分子運動之分析----------119
三.實驗部分-------------------------------------121
3 . 1 實驗藥品------------------------------121
3 . 2 實驗設備------------------------------122
3 . 3 實驗方法------------------------------123
3 . 3. 1 聚摻合體製備-----------------------123
3 . 3. 2 分析試樣之方法---------------------123
四.結果與討論-----------------------------------129
4 . 1 PCL/PVC摻合體系統相容性之探討---------129
4. 1. 1 熔點(Tm)的測定----------------------129
4 . 1. 2 玻璃轉移溫度(Tg)的測定-------------131
4 . 2 PCL/PVC摻合體系統之交互作用力對結晶與熔融行為
之影響------------------------------------------132
4 . 3 以小角度X光散射(SAXS)探討PCL/PVC摻合系統經
超臨界CO2流體處理前後之結構形態變化-------------134
五.結論-----------------------------------------158
六.參考文獻-------------------------------------159
自述--------------------------------------------162
第一章 聚己內酯在超臨界CO2流體之固態聚合反應及結晶形態變化
之研究
[1] 葉安義,1998,”超臨界萃取於食品之應用”,化工技術,第6卷第2期。
[2] McHugh M. A. and Krukonis V. J., 1994, Supercritical Fluid Extraction: Principles and Practice, 2nd Edition, Butterworth Heinemann, Boston.
[3] Via J. C., Braue C. L. and Taylor L. T., 1994, Analysis Chemistry , 66, 603.
[4] O’Neill M. L., Yates M. Z. and Johnston K. P.,1998, Macromolecules, 31, 2838.
[5] Wissinger R. G. and Paulaitis M. E., 1987, Journal of Polymer Science:Part B:Polymer Physics, 25, 2497.
[6] Berens A. R., Huvard G. S. and Korsmeyer R. W., 1992, Journal of Applied Polymer Science, 46, 231.
[7] Goel S. K. and Beckman E. J., 1994, Polymer Engineering Science, 34, 1137.
[8] Beckman E. J. and Goel S. K., 1994, Polymer Engineering Science, 34, 1148.
[9] Handa Y. P., Wong B. and Zhang Z., 1999, Polymer Engineering Science, 39, 55.
[10] 鄭春松、戴怡德,1994,”超臨界流體中之結晶程序”,化工,第41卷第4期。
[11] Arora K. A., Lesser A. J. and McCarthy T. J., 1998, Macromolecules, 31, 4614.
[12] Arora K. A., Lesser A. J. and McCarthy T. J., 1998, Polymer Engineering Science, 38, 2055.
[13] Shieh Y. T., Su J. H., Manivannan G. and LEE H. C., 1996, Journal of Applied Polymer Science, 59, 695.
[14] Shieh Y. T., Su J. H, and Lee S. S., 1996, Journal of Applied Polymer Science, 59, 707.
[15] Kazarian S. G., Vincent M. F., Bright F. V., Liotta C. L. and Eckert C. A., 1996, Journal of American Chemical Society, 118,729.
[16] Koros W. J., Paul D. R. and Rocha A. A., 1976, Journal of Polymer Science:Polymer Physics Edition, 14, 687.
[17] Koros W. J. and Paul D. R., 1978, Journal of Polymer Science, Part B: Polymer Physics, 16, 1947.
[18] Koros W. J., 1980, Journal of Polymer Science, Part B: Polymer Physics, 18, 981.
[19] Koros W. J., 1985, Journal of Polymer Science, Part B: Polymer Physics, 23, 1611.
[20] 劉冠含,2001,”超臨界二氧化碳流體對聚乙烯氧/聚甲基丙烯酸甲酯摻合體相結構之影響研究”,碩士論文。
[21] 林彥谷,2001,”超臨界二氧化碳流體對聚乙烯氧/聚醋酸乙烯酯摻合體相結構之影響研究”,碩士論文。
[22] 高信敬,2001,”超臨界流體在熱塑性聚酯固態聚合製程之應用”,化工資訊。
[23] Hildebrand J. H. and Scott R. L., 1950, The Solubilities of Nonelectrolytes, 3rd Edition, New York.
[24] Newitt D. M., Pai M. U. and Kuloor N. R., 1956, Thermodynamic Functions of Gases, Butterworths Scientific Publications , London, 132.
[25] Petropoulos J. H., 1970, Journal of Polymer Science, Part 2, 8, 1797.
[26] Koros W. J., Smith G. N. and Stannett V., 1981, Journal of Applied Polymer Science, 26, 159.
[27] Wissinger R. G. and Paulaitis M. E., 1987, Journal of Polymer Science, Part B: Polymer Physics, 25, 2497.
[28] Newitt D. M., Pai M. U. and Kuloor N. R., 1956, Thermodynamic Functions of Gases, Butterworths Scientific Publications , London, 132.
[29] Petropoulos J. H., 1970, Journal of Polymer Science, Part 2, 8, 1797.
[30] Iyer V. S., Sehra J. C., Ravindranath K., 1993, Macromolecules, 26, 1186.
[31] Beckman E., and Porter R. S., 1987, Journal of Polymer Science, Part B: Polymer Physics, 25, 1511.
[32] Ranhakrishnan S., Iyer V. S., and Sivaram S., 1994, Polymer, 35, 3789.
[33] Avrami M., 1939, Journal of Polymer Science, 7, 1103.
[34] Avrami M., 1941, Journal of Polymer Science, 9, 177.
[35] Chynoweth K. R. and Stachurski Z.H., 1986, Polymer, 27, 1912.
[36] Bittiger H., Marchessault R. H. and Niegisch W. D., 1970, Acta Cryst., 26, 1923.
[37] Phillips P. J., Rensch G. J. and Taylor K. D., 1987, Journal of Polymer Science, Part B: Polymer Physics, 25, 1725.
[38] Wunderlish B. and Czornyj G., 1977, Macromolecules, 10, 906.
[39] Hoffman J. D., 1982, Polymer, 23, 656.
[40] Lovinger A. J., Davis D. D. and Padden F. J., 1985, Polymer, 26, 1595.
[41] Deslandes Y., Sabir F. N., and Roovers J., 1991, Polymer, 32, 1267.
[42] Hsin L. C., Lain J. L., Wen C. O-Y., Jenn C. H., and Wen Y. W., 1997, Macromolecules, 30, 1718.
[43] Gedde U. W., 1995, Polymer Physics, Chapman and Hall, London.
[44] Schultz J., 1974, Polymer Materials Science, Prentice-Hall, Inc..
[45] Hoffman J. F. and SPE Trans., 1964 4(4)1.
[46] Hoffman J. D. and Weeks J. J., 1962, J. Res. Natl. Bur. Stand. A : Phys. Chem., 66A,13.
[47] Hoffman J. D. and Miller R. L., 1997, Polymer, 38, 3151.
[48] Flory P. J., 1953, Principle of Polymer Chemistry, Cornell University, Press, Ithaca, New York.
[49] Scott R. L., 1949, Journal of Chemical Physics, 17, 279.
[50] Nishi T. and Wang T. T., 1975, Macromolecules, 8, 909.
[51] Lauritzen J. I. and Hoffman J. D., 1973, Journal of Applied Physics, 44, 4340.
[52] 林滄浪,”中子與X-光散射教材”,國立清華大學工程科學院,新竹。
[53] 黃啟振,國立清華大學原子科學研究所,1996。
[54] Glatter O. and Kratky O., 1982, Small Angle X-ray Scattering, Academic Press, New York.
[55] Balta-Calleja F. J. and Vonk C. G., 1989, X-ray scattering of synthetic polymers, Amsterdam Press, New York.
[56] Debye P. and Bueche A. M., 1949, Journal of Applied Physics, 20, 518.
[57] Seymour R. B. and Carraher C. E., 1988, Polymer Chemistry, Marcel Dekker, New York.
[58] Roe R. J., Fishkis M. and Chang J. C., 1981, Macromolecules, 14, 1091.
[59] Li Y., Gao T., Desper C. R. and Chu B., 1992, Macromolecules, 25, 7365.
[60] Tsvankin D. Y., 1964, Science USSR, 6, 2358.
[61] Vonk C. G. and Kortleve G., 1967, Kolloid, Z. Z. Polmer, 220, 19.
[62] Strobl G. R. and Schneider M., 1980, Journal of Polymer Science Polymer Physics Edition, 18, 1343.
[63] Strobl G. R., Schneider M. J. and Voigt-Martin I. G., 1980, Journal of Polymer Science Polymer Physics Edition, 18, 1361.
[64] Tyagi D., McGrath J. E. and Wilkes G. L., 1986 Polymer Engineering Science, 26, 1371.
[65] Helfand E. and Wasserman Z. R., 1976, Macromolecules, 9, 879.
[66] Koberstein J. T. and Galambos A. F., 1992, Macromolecules, 25, 6195.
[67] Kahovec L., Porod G. and Ruck H., 1953, Kolloid-Z. Z. Polymer, 133, 16.
[68] Kratky O., 1966, Pure Applied. Chemisty, 12, 483.
[69] Porod G., 1951, Kolloid-Z. Z. Polymer, 124 83.
[70] Ruland W., 1971, Journal of Appliced Crystallography, 4, 70.
[71] Koberstein J. T. and Galambos A. F., 1992, Macromolecules, 25, 6195.
[72] Tyagi D., McGrath J. E. and Wilkes G. L., 1986, Polymer Engineering Science, 26, 1371.
[73] Hashimoto T., Fujimura M. and Kawai H., 1980, Macromolecules, 13, 1660.
[74] Hashimoto T., Shibayama M. and Kawai H., 1980, Macromolecules, 13, 1237.
[75] Santa Cruz C. S., Strbeck N., Zachmann H. G. and Batlta Calleja F. J., 1991, Macromolecules, 24, 5980.
[76] Albrecht T. and Strobl G., 1996, Macromolecules, 29, 783.
[77] Brandrup J. and Immergut E. H., 1989, Polymer Handbook 3rd Edition, Ⅶ, 24.
[78] Allcock H. R. and Lampe F. W., 1990, Contemporary Polymer Chemistry 2nd Edition, 265.
[79] Wunderlich B., 1973, Macromolecules Physics, 3, New York:Academic Press.
第二章 超臨界CO2流體對PCL/PVC摻合體相形態之影響
[1] Paul D. R. and Newman S., 1978, Polymer Blends, volsⅠand Ⅱ, Plenum Press, New York.
[2] Paul D. R. and Barlow J. W., 1980, Journal of Macromolecules Science, c18, 109.
[3] Paul D. R. and Barlow J. W., 1982, Polymer Blends, 2, 1.
[4] Liu A. S. and Liau W. Y., 1998, Macromolecules, 31, 6593.
[5] Talibuddin S., Wu L., Runt J. and Lin J. S., 1996, Macromolecules, 29, 7527.
[6] Wu L., Lisowski M, Talibuddin S. and Runt J., 1999, Macromolecuies, 32, 1576.
[7] Russell T. P. and Ito H., 1988, Macromolecuies, 21, 1703.
[8] Sauer B. B. and Hsiao B. S., 1993, Journal of Polymer Science Polymer Physics Edition, 31, 901.
[9] Chen H. L. and Porter R. S., 1992, Polymer Engineering Science, 32, 1870.
[10] Hundson S. D., Davis D. D. and Lovinger A. J., 1992, Macromolecules, 25, 1795.
[11] Saeki S., Kuwahara S. and Kaneko M., 1975, Macromolecules, 246.
[12] Tashiro K., Stein R. S. and Hsu S. L., 1992, Macromolecules, 25, 1801.
[13] Tashiro K., Izuchi M. and Stein R. S., 1994, Macromolecules, 27, 1221.
[14] Tashiro K., Izuchi M., Kobayashi M. and Stein R.S., 1994, Macromolecules, 27, 1224.
[15] Tashiro K., Izuchi M., Kobayashi F., Jin C., Kobayashi M. and Stein R. S., 1994, Macromolecules, 27, 1240.
[16] Penning J. P. and Manley R. St. J., 1996, Macromolecules, 27, 84.
[17] Chen H. L. and Wang S. F., 2000, Polymer, 41, 5157.
[18] Stein R. S., Khambatta F. B., Russell T., Escala A. and Balizer E.J., 1978, Polymer Science Polymer Symp. 63, 313.
[19] Saito H. and Stuhn B., 1994, Macromolecules,27, 216.
[20] Hahn B. R., Herrmann-Schonherr O. and Wendorff J. H., 1987, Polymer, 28, 201.
[21] Warner F. P., Macknight W. J. and Steein R. S., 1977, Journal of Polymer Science Polymer Physics Edition, 15, 2113.
[22] Defieuw G., Groeninckx G. and Reynaers H., 1989, Polymer, 30, 595.
[23] Keith H. D. and Padden Jr. F., 1964, Journal of Applied Physics, 35, 1286.
[24] Keith H. D. and Padden Jr. F., 1963, Journal of Applied Physics, 34, 2409.
[25] Khambatta F. B., Russell T. and Stein R. S., 1976, Journal of Polymer Science Polymer Physics Edition, 14, 1391.
[26] Russell T. P. and Stein R. S., 1983, Journal of Polymer Science Polymer Physics Edition, 21, 999.
[27] Ullmann W. and Wendorff J. H., 1985, Composited Science Technology, 23, 97.
[28] Morra B. S. and Stein R. S., 1982, Journal of Polymer Science Polymer Physics Edition, 20, 2261.
[29] Debier D., Jonas A. M. and Legras R. S., 1998, Journal of Polymer Science Part: B Polymer Physics Edition, 36, 2197.
[30] Ong C. J. and Price F. P., 1978, Journal of Polymer Science Polymer Physics Edition, 63.
[31] Chen H. L., Li L. J. and Lin T. L., 1998, Macromolecules, 31, 2255.
[32] Talibuddin S., Wu L., Runt J. and Lin J. S., 1996, Macromolecules, 29, 7527.
[33] Chen H. L., Wang S. F. and Lin T. L., 1998, Macromolecules, 31, 8924.
[34] Yee A. F., 1977, Polymer Engineering Science, 17, 213.
[35] Kwei T. K., Nishi T. and Roberts R. F., 1974, Macromolecules, 7, 667.
[36] Olabisi O. L., Robeson M. and Shaw M. T., 1979, Polymer-Polymer Miscibility, Academic Press, New York.
[37] Olabisi O., 1982, Polyblends, John Wiley and Sons, 18, 433.
[38] Karasz F. E., 1985, Polymer Blends and Mixtures, 25.
[39] Robeson L. M., 1982, Miscible Polymer Blends:Review with Emphasis on Recent Advances, MMI Press Symp, 2, 177.
[40] Barlow J. and Paul D. R., 1981, Polymer Engineering Science, 21, 985.
[41] Couchman P. R., 1878, Macromolecules, 11, 1156.
[42] Wood L. A., 1958, Journal of Polymer Science, 28, 319.
[43] Fox T. G., 1956, Bull. American. Physics. Society., 1, 123.
[44] Pochan J. M., Beatty C. L. and Pochan D. F., 1979, Polymer, 20, 879.
[45] Siegmann A., 1982, Journal o f Applied Polymer Science, 27, 1053.
[46] Chen H. L. and Lin T. L., 2000, Proceedings of Workshop of Netron and X-ray Scattering on Polymeric Materials, INER, Lungtan, Taiwan, Dec 23, 356.
[47] Keith H. D. and Padden F. J., 1964, Journal of Applied Physics, 35, 1286.
[48] Russell T. P. and Ito H., 1988, Macromolecules, 21, 1703.
[49] Cimmino S. and Martuscelli E., 1988, MaKromol. Chem., Macromol. Symp., 16, 147.
[50] Baldrian J., Horky M. and Bernstorff S., 1999, Polymer, 40, 439.
[51] Hahn B. R., Herrmann-Schonherr O. and Wendorff J. H., 1987, Polymer, 28, 201.
[52] Sauer B. B. and Hsiao B. S., 1993, Journal of Polymer Science Polymer Physics Edition, 31, 901.
[53] Porod G., 1951, Kolloid-Z. Z. Polymer, 124, 83.
[54] Ruland W., 1971, Journal of Applied Crystallography, 4, 70.
[55] 謝國煌、陳原振、曾勝茂,”動態機械分析儀之應用分析”,科儀新知,第18卷第4期。
[56] Debye P. and Bueche A. M., 1949, Journal of Applied Physics, 20, 518.
[57] Strobl G. R. and Schneider M., 1980, Journal of Polymer Science Polymer Physics Edition, 18, 1343.
[58] Ruland W., 1971, Journal of Appliced Crystallography, 4, 70.
[59] Gedde U. W., 1995, Polymer Physics, Chapman and Hall, London.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top