跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/23 05:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周冠行
研究生(外文):Jhou, Guan-Sing
論文名稱:利用理論計算來探討二氧化氮在純 Pd 和 Ni及Pd合金的奈米線上的吸附過程與分解反應
論文名稱(外文):The NO2 Adsorption and Dissociation on pure Pd and Ni@Pd Nanowire
指導教授:陳輝龍陳輝龍引用關係
指導教授(外文):Chen, Hui-Lung
口試委員:王伯昌陳輝龍蔡啟堂
口試委員(外文):Wang, Bo-ChengChen, Hui-LungTsai, Chiitang
口試日期:2012-07-26
學位類別:碩士
校院名稱:中國文化大學
系所名稱:化學系應用化學碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:100
語文別:中文
論文頁數:81
中文關鍵詞:奈米線吸附分解二氧化氮
外文關鍵詞:PdNinanowireAdsorptionDissociationNO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
先將找到Pd Nanowire 中對於NO2、NO、N、O比較好的吸附位置,
以供之後分解後原子位置擺放的參考,再找出最佳的吸附分解路徑,
希望能夠利用找到一個對NO2來說較好的吸附分解路徑,
藉以提供一些新的觀點給做實驗的人。
最後再將Pd Nanowire之中最好的路徑裡面有作用到的Pd取代成Ni 做成雙金屬 藉此比較看看有無更好的能障及吸附能
再藉由電荷分析來找出兩種材料的差異。
Our calculations with spin-polarized density functional theory was carried out to characterize the adsorption and dissociation of NO2 molecule on the Pd and Ni@Pd nanowire, which are combine with 22 Pd and 6Ni@16Pd. The molecular structures and adsorbate/substrate interaction energies of NO2/Pd, NO /Pd, N/Pd ,O/Pd and NO2/Ni@Pd, NO / Ni@Pd, N/ Ni@Pd, O/ Ni@Pd configurations were predicted. It was shown that the barriers for the stepwise NO2 dissociation reaction for Pd, NO2(a), are -21.99 kcal/mol àNO(a)+O(a), are -48.08 kcal/mol (for NO-O bond activation the barriers are 15.52 kcal/mol), àN(a)+2O(a), are -30.07 kcal/mol (for N-O bond activation the barriers are 53.52 kcal/mol), for Ni@Pd, NO2(a), are -34.31 kcal/mol àNO(a)+O(a), are -78.53 kcal/mol (for NO-O bond activation the barriers are 3.98 kcal/mol), àN(a)+2O(a), are -89.08 kcal/mol (for N-O bond activation the barriers are 40.96 kcal/mol). It shows that the adsorption and dissociation of NO2 molecule of Ni@Pd nanowire is better than Pd nanowire.
第一章 1
§1-1英文摘要..............................................................
§1-2緒論..................................................................
第二章 理論以及計算方法...................................................6
§2-1 本文所用的理論及計算方法............................................
§2-2 密度泛函理論(Density functional theory).............................
§2-3 局部密度近似法(Local density approximation, LDA) 與廣義梯度近似法
(Generalized gradient approximation, GGA)................................12
§2-4 VASP (Vienna ab-initio simulation package).........................1
§2-5 空間週期性.........................................................1
§2-6 Born-Oppenheimer approximation(又稱絕熱近似法)...................1
§2-7 變分定理(Variation theorem).......................................2
§2-8 布洛赫定理(Bloch theorem).........................................2
§2-9 虛位勢(Pseudopotential)...........................................2
第三章 結果與討論........................................................26
§3-1 Pd Nanowire 及Ni@Pd nanowire參數選擇以及結構化的特性的探討.........2
§3-1.1 由Pd nanowire 的結構探討論........................................2
§3-2 NO2, NO, N和O吸附在Pd nanowire 的吸附結構探討......................2
§3-2.1NO2分子在Pd nanowire上的吸附結構與能量的探討.......................2
§3-2.2NO分子在Pd nanowire上的吸附結構與能量的探討........................3
§3-2.3N,O在Pd nanowire上的吸附結構與能量的探討...........................4
§3-3 NO2分子在Pd nanowire 上的分解反應..................................4
§3-3.1 NO2在Pd nanowire上的分解反應機構研究..............................4
§3-4 NO2在Ni@Pd nanowire上的分解反應機構研究............................5
§ 3-5 NO2?在Pd nanowire及Ni@Pd nanowire分解路徑的charge density difference
探討及Bader charge 分析..................................................63
§ 3-6 Pd Nanowire 及Ni@Pd Nanowire的比較................................6
第四章 結論..............................................................72
參考文獻.................................................................73

(1)(a) Taylor, K. C. In Catalysis Science and Technology, Anderson, J. R.; Boudart, M. Eds.; Springer: Berlin
(2)(a) Fahey, D. W.; Eubank, C. S.; Hubler, G.; Fehsenfeld, F. C. J. Atmos. Chem. 1985, 3, 435. (b) Brown, W.
(3)Segner, J.; Vielhaber, W.; Ertl, G. Isr. J. Chem. 1982, 22, 375.
(4)Dahlgren, D.; Hemminger, J. C. Surf. Sci. 1982, 123, L739.
(5)Bartram, M. E.; Windham, R. G.; Koel, B. E. Surf. Sci. 1987, 184, 57.
(6)Bartram, M. E.; Windham, R. G.; Koel, B. E. Langmuir 1988, 4, 240.
(7)Schwalke, U.; Parmeter, J. E.; Weinberg, W. H. J. Chem. Phys. 1986, 84, 4036.
(8)Schwalke, U.; Parmeter, J. E.; Weinberg, W. H. Surf. Sci. 1986, 178, 625.
(9)Outka, D. A.; Madix, R. J.; Fisher, G. B.; Dimmagio, C. Surf. Sci. 1987, 179, 1.
(10)Bare, S. R.; Griffiths, K.; Lennard, W. N.; Tang, H. T. Surf. Sci. 1995, 342, 185.
(11)Polzonetti, G.; Alnot, P.; Brundle, C. R. Surf. Sci. 1990, 238, 226.
(12)Polzonetti, G.; Alnot, P.; Brundle, C. R. Surf. Sci. 1990, 238, 237.
(13)Brown, W. A.; Gardner, P.; King, D. A. Surf. Sci. 1995, 330, 41.
(14)Wickham, D. I.; Banse, B. A.; Koel, B. E. Surf. Sci. 1991, 243, 83.
(15)Bartram, M. E.; Koel, B. E. Surf. Sci. 1989, 213, 137.
(16)Wang, J.; Voss, M. R.; Busse, H.; Koel, B. E. J. Phys. Chem. B 1998, 102, 4693.
(17)Wang, J.; Koel, B. E. J. Phys. Chem. A 1998, 102, 8573.
(18)Beckendorf, M.; Katter, U. J.; Schlienz, H.; Freund, H. J. J. Phys. Chem. 1993, 5, 5471.
(19)Wickham, D. T.; Banse, B. A.; Koel, B. E. Catal. Lett. 1990, 6, 163.
(20)Chen, H.-L.; Wu, S.-Y.; Chen, H.-T.; Chang ,J.-G.; Ju, S.-P.; Tsai, C.; Hsu L,-C. Langmuir. 2010, 26, 715
(21)Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
(22)Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
(23)Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.
(24)Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 11169.
(25)White, J. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954.
(26)Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865
(27)Zhang, Y.; Yang, W. Phys. Rev. Lett. 1998, 80, 890.
(28)Blo"chl, P. E. Phys. Rev. B 1994, 50, 17953.
(29)Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
(30)Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
(31)Ulitsky, A.; Elber, R. J. Chem. Phys. 1990, 92, 1510.
(32)Mills, G.; Jo'nsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
(33)Henkelman, G.; Uberuaga, B. P.; Jo'nsson, H. J. Chem. Phys. 2000, 113, 9901.
(34)Sachtler, W. H. M. Faraday Discuss. Chem. Soc. 1981, 72, 7.
(35)Rordiguez, J. A. Surf. Sci. Rep. 1996, 24, 223.
(36)Chen, J. G.; Menning, C. A.; Zellner, M. B. Surf. Sci. Rep. 2008, 63, 201.
(37)Lam, Y. L.; Criado, J.; Boudart, M. Nouv. J. Chim. 1997, 1, 461
(38)Schneider, U.; Busse, H.; Link, R.; Castro, G. R.; Wandelt, K. J. Vac. Sci. Technol. A, 1994, 12, 2069.
(39)Liu, P.; Norskov, J. K. Phys. Chem. Chem. Phys. 2001, 3, 3814.
(40)Gonza'lez, S.; Sousa, C.; Illas F. J. Catal. 2006, 239, 431.
(41)Choi, Y. M.; Compson, C.; Lin, M. C.; Liu, M. J. Alloys Compd. 2007, 427, 25.
(42)Inderwildi, O. R.; Jenkins, S. J.; King, D. A. Sur. Sci. 2007, 601, L103.
(43)Gonza'lez, S.; Loffreda, D.; Sautet, P.; Illas F. J. Phys. Chem. C 2007, 111, 11376.
(44)Gladys, M. J.; Inderwildi, O. R.; Karakatsani, S.; Fiorin, V.; Held, G. J. Phys. Chem. C 2008, 112, 6422.
(45)Fouda-Onana, F.; Savadogo, O. Electrochim. Acta 2009, 54, 1769.
(46)Ham, H. C.; Hwang, G. S.; Han, J.S.; Nam, W.; Lim, T. H. J. Phys. Chem. C 2009, 113, 12943.
(47)Zhang, J.; Jin, H.; Sullivan, M. B.; Lim, F. C. H.; Wu, P. Phys. Chem. Chem. Phys. 2009, 11, 1441.
(48)Gan, L. Y.; Zhang, Y. X.; Zhao, Y. J. J. Phys. Chem. C 2010, 114, 996.
(49)Staykov, A.;Kamachi, T.;Ishihara, T.;Yoshizawa, K. J. Phys. Chem. C 2008, 112, 19501.
(50)Li, J.;Staykov, A.;Kamachi, T.;Ishihara, T.;Yoshizawa, K. J. Phys. Chem. C 2011, 115, 7392.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊