跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 09:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳柏賢
研究生(外文):Wu, Po-Hsien
論文名稱:雙頻帶通濾波器與寬頻帶通濾波器的設計
論文名稱(外文):Design of a Dual-Band Bandpass Filter and a Wide Bandpass Filter
指導教授:湯敬文
指導教授(外文):Tang, Ching-Wen
口試委員:黃尊禧王蒼容吳建華
口試委員(外文):Huang, Tzuen-HsiWang , Chun-LongWu, Janne-Wha
口試日期:2011-07-23
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:62
中文關鍵詞:雙頻帶通濾波器寬頻帶通濾波器步階式耦合線步階阻抗諧振
外文關鍵詞:wide-passband bandpass filterdual-band filterstepped coupled linestepped impedance resonator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:867
  • 評分評分:
  • 下載下載:147
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文是以平面式微帶線結構為研究基礎,分別進行雙頻與寬頻的微波帶通濾波器之電路設計。本文首先提出一種可達成雙頻帶的帶通濾波器架構,它是由兩個步階阻抗諧振腔所構成,且其諧振腔末端交互耦合。此濾波器的特點是傳輸零點直接出現在頻帶的兩旁以及截止頻帶上,因此能達成良好的濾波特性。另外,完整的電路設計流程與設計方程式皆詳細敘述在論文中。
接著本文提出一個寬頻帶的帶通濾波器架構,且此濾波器的特點是擁有抑制寬頻諧波的能力。不同於以往濾波器採用開路殘段達成諧波抑制的方法,本文提出一個步階式耦合線的結構;它的傳輸零點位置,可以直接藉由調控耦合線的耦合強弱,進而達成諧波的抑制。此方式與目前文獻已提出的諧波抑制方法相比,非但沒有增加電路設計的複雜度,亦不需額外串接諧波抑制的電路。藉由此方法,一個具有寬截止且寬頻帶的小型濾波器將可以被實現。
上述電路均使用全波電磁模擬軟體進行模擬工作,並實際進行電路製作與量
測。經由量測結果與電磁模擬相比較,確實驗證與理論有良好的一致性。
This study focuses on the design of a dual-band and a wide-passband bandpass filter, based on the planar microstrip structure. On the one hand, a new method for the dual-band filter is proposed. On the other hand, a wide-passband bandpass filter with a wide stopband is developed.
As for the dual-band filter, two stepped impedance resonators, whose two ends are mutually coupled, are utilized. Transmission zeros appear around the paasband skirts and within the rejection band. As a result, the achievement in filtering is quite notable. In addition, detailed design procedures and formula are provided as well.
As to develop the wide-passband bandpass filter, by adjusting the coupling between the stepped coupled line, transmission zeros can be easily tuned to result in a high level of harmonic suppression. Moreover, the design procedure for the wide-passband bandpass filter with a wide stopband is not complicated; besides, the circuit size is compact.
In terms of filter simulation, a full-wave electromagnetic simulator is employed for this thesis. Moreover, these circuits are fabricated and measured. Well matched results between the simulation and measurement show the validity of all proposed circuits.
第一章 簡介 1
1.1 研究動機 1
1.2 文獻探討 1
1.3 論文架構 2
第二章 濾波器設計理論 3
2.1 散射參數 3
2.2 二埠網路的奇偶模態電路分析 5
2.3 平行耦合微帶線之分析 6
2.4 步階阻抗諧振腔之分析 9
第三章 雙頻帶通濾波器設計 15
3.1 簡介 15
3.2 雙頻帶通濾波器分析 16
3.2.1 諧振腔分析 16
3.2.2 零點分析 18
3.2.3 頻帶調控 20
3.2.3.1頻帶位置的調控 20
3.2.3.2頻寬的調控 21
3.3 設計實例 22
3.3.1 規格 22
3.3.2 模擬與實做 22
第四章 寬頻帶通濾波器設計 31
4.1簡介 31
4.2 步階式耦合線分析 32
4.2.1 步階式耦合線Z矩陣分析 32
4.2.2 零點分析 36
4.3 步階式耦合線類型探討 37
4.3.1 均勻耦合線(uniform coupled line) 37
4.3.2 弱強弱步階式耦合線 39
4.3.3 強弱強步階式耦合線 41
4.4 步階式耦合在寬頻濾波器(Wide Bandpass Filter)上的應用 43
4.4.1 均勻耦合線寬頻濾波器 43
4.4.2 弱強弱步階式耦合線寬頻濾波器 45
4.5設計實例 49
4.5.1 等效電路模擬 49
4.5.2 電路架構 50
4.5.3 電磁模擬與實做量測 51
第五章 結論 53
參考文獻 55
[1]S. B. Cohn, “Parallel-coupled transmission-line-resonator filters”, IRE Trans. Microw. Theory and Tech., vol. MTT-6, pp. 223–231, Apr. 1958.
[2]M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech. vol. 28, no. 12, pp. 1413–1417, Dec.1980.
[3]K. U-yen, E. J. Wollack, T. A. Doiron, J. Papapolymerou, and J. Laskar, “A planar bandpass filter design with wide stopband using double split-end stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech. vol. 54, no. 3, pp. 1237–1244, Mar. 2006.
[4]S. F. Chang, Y. H. Jeng and J. L. Chen, “Dual-band step-impedance bandpass filter for multimode wireless LANs,” Electron. Lett., vol.40, no. 1, pp.38–39, Jan. 2004.
[5]C. W. Tang, “Design of a microstrip filter using multiple capacitively loaded coupled lines,” IET Microw. Antennas Propag., vol. 1, no. 3, pp. 651–657, Jun. 2007.
[6]C. H. Wu, C. H. Wang, and C. H. Chen, “Stopband-extended balanced bandpass filter using coupled stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 507–509, Jul. 2007.
[7]Y. M. Chen, S. F. Chang, C. C. Chang, and T. J. Hung, “Design of stepped-impedance combline bandpass filters with symmetric insertion-loss response and wide stopband range,” IEEE Trans. Microw. Theory Tech. vol. 55, no. 10, pp. 2191–2199, Oct. 2007.
[8]C. L. Hsu and J. T. Kuo, “A two-stage SIR bandpass filter with an ultra-wide upper rejection band,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 34–36, Jan. 2007.
[9]J. T. Kuo, C. L. Hsu, and E. Shih, “Compact planar quasi-elliptic function filter with inline stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech. vol. 55, no. 8, pp. 1747–1754, Aug. 2007.
[10]C. W. Tang and Y. K. Hsu, “Design of a wide stopband microstrip bandpass filter with asymmetric resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 91–93, Feb. 2008.
[11]C. W. Tang and Y. K. Hsu, “A microstrip bandpass filter with ultra-wide stopband,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 6, pp. 1468–1472, Jun. 2008.
[12]S. L. March, “Phase velocity compensation in parallel-coupled microstrip,” in IEEE MTT-S Int. Microw. Symp. Dig., 1982, pp.410–412.
[13]J. Bahl, “Capacitively compensated high performance parallel coupled microstrip filters,” in IEEE MTT-S Int. Microw. Symp. Dig., 1989, pp.679–682.
[14]Richard J. Cameron, Ming Yu, and Ying Wang, “Direct-Coupled Microwave Filters With Single and Dual Stopbands,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3288–3297, Nov. 2005.
[15]H. Joshi and W. J. Chappell, “Dual-band lumped-element bandpass filter,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4169–4177, Dec. 2006.
[16]H. M. Lee and C. M. Tsai, “Dual-band filter design with flexible passband frequency and bandwidth selections,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1002–1009, May 2007.
[17]J. Lee and K. Sarabandi, “A synthesis method for dual-passband microwave filters,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1163–1170, Jun. 2007.
[18]X. Y. Zhang, J. X. Chen, Q. Xue, and S. M. Li, “Dual-band bandpass filters using stub-loaded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 583–585, Aug. 2007.
[19]P. Mondal and M. K. Mandal, “Design of dual-band bandpass filters using stub-loaded open-loop resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 1, pp. 150–155, Jan. 2008.
[20]C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a 0o feed structure,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 10, pp. 2362– 2367, Oct. 2002.
[21]P. K. Singh, S. Basu, and Y. H. Wang, “Miniature dual-band filter using quarter wavelength stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 88–90, Feb. 2008.
[22]A. S. Liu, T. Y. Huang, and R. B. Wu, “A dual wideband filter design using frequency mapping and stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 2921–2929, Dec. 2008.
[23]Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped-impedance resonator with new coupling schemes,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3779–3785, Oct. 2006.
[24]J. Wang, Y. X. Guo, B. Z. Wang, L. C. Ong, and S. Xiao, “High selectivity dual-band stepped-impedance bandpass filter,” Electron. Lett., vol. 42, no. 9, pp. 1–2, Apr. 2006.
[25]H. K. Jhuang, C. H. Lee, and C. I. G. Hsu, “Design of compact microstrip dual band bandpass filters with λ/4 stepped-impedance resonators,” Microw. Opt. Technol. Lett., vol. 49, no.1, pp. 164–168, Jan. 2007.
[26]J. T. Kuo and H. P. Lin, “Dual-band bandpass filter with improved performance in extended upper rejection band,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 824–829, Apr. 2009.
[27]H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” in IEEE MTT-S Int. Microw. Symp. Dig., 1997, pp. 789–792.
[28]M. H. Weng, R. Y. Yang, Y. C. Chang, H. W. Wu, and K. Shu, “Design of a multilayered dual-band bandpass filter with transmission zeros,” Microw. Opt. Technol. Lett., vol. 50, no. 8, pp. 2010–2013, Aug. 2008.
[29]M. H. Weng, H. W. Wu, K. Shu, J. R. Chen, R. Y. Yang, and Y. K. Su, “A novel triple-band bandpass filter using multlayer-based substrates for WiMAX,” in Proc. 37th Eur. Microw. Conf., 2007, pp. 325–328.
[30]M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1078–1085, Jul. 1997.
[31]M. Sagawa, M. Makimoto, and S. Yamashita, “A design method of bandpass filters using dielectric-filled coaxial resonators,” IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 2, pp. 152–157, Feb. 1985.
[32]J. T. Kuo and H. S. Cheng, “Design of quasi-elliptic function filters with a dual-passband response,” IEEE Microw. Wireless Comp. Lett., vol. 14, no. 10, pp. 472–474, Oct. 2004.
[33]J. T. Kuo, T. H. Yeh, and C. C. Yeh, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1331–1337, Apr. 2005.
[34]C. L. Hsu, J. T. Kuo, and F. C. Hsu, “Design of loop resonator filters with a dual-passband response,” in Proc. Asia-Pacific Microw. Conf., vol. 3, 4-7 Dec. 2005.
[35]C. Y. Chen, C Y. Hsu, and H. R. Chung, “Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators,” IEEE Microw. Wireless Comp. Lett., vol. 16, no. 12, pp. 669–671, Dec. 2006.
[36]H. Wang and L. Zhu, "Aperture-backed microstrip line multiple-mode resonator for design of a novel UWB bandpass filter,” in Proc. Asia-Pacific Microw. Conf., 2005.
[37]T. B. Lim, S. Sun, and L. Zhu, “Compact ultra-wideband bandpass filter using harmonic-suppressed multiple-mode resonator,” Electron. Lett., vol. 43, no. 22, Oct. 2007.
[38]K. Ma, K. C. B. Liang, R. M. Jayasuriya, and K. S. Yeo, “A wideband and high rejection multimode bandpass filter using stub perturbation,” IEEE Microw. Wireless Comp. Lett., vol. 19, no. 1, pp. 24–26, Jan. 2009.
[39]J. T. Kuo, M. Jiang, and H. J. Chang, “Design of parallel-coupled microstrip filters with suppression of spurious resonances using substrate suspension,” IEEE Trans. Microw. Theory and Tech., vol. 52, no. 1, pp. 83–89, Jan. 2004.
[40]J. Marimuthu and M. Esa, “Wideband and harmonic suppression method of parallel coupled microstrip bandpass filter using centered single groove,” in IEEE Int. Conf. on Telecom. and Malaysia Int. Conf. on Commun., 2007, pp.622–626.
[41]A. Balalem, W. Menzel, J. Machac and A. Omar, “A simple ultra-wideband suspended stripline bandpass filter with very wide stop-band,” IEEE Microw. Wireless Comp. Lett., vol. 18, no. 3, pp. 170–172, Mar. 2008.
[42]J. X. Chen, T. Y. Yum, J. L. Li, and Q. Xue, “Dual-mode dual-band bandpass filter using stacked-loop structure,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp. 502–504, Sep. 2006.
[43]X. Guan, Z. Ma, P. Cai, Y. Kobayashi, T. Anada, and G. Hagiwara, “Synthesis of dual-band bandpass filters using successive frequency transformations and circuit conversions,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 3, pp. 110–112, Mar. 2006.
[44]H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” in IEEE MTT-S Int. Microw. Symp. Dig., 1997, pp. 789–792.
[45]C. Quendo, E. Rius, and C. Person, “An original topology of dual-band filter with transmission zeros,” in IEEE MTT-S Int. Microw. Symp. Dig., 2003, pp. 1093–1096.
[46]C. H. Chang, H. S. Wu, H. J. Yang, and C. K. C. Tzuang, “Coalesced single-input single-output dual-band filter,” in IEEE MTT-S Int. Microw. Symp. Dig., 2003, pp. 511–514.
[47]H. Y. Yim and K. K. M. Cheng, “Novel dual-band planar resonator and admittance inverter for filter design and applications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 2187–2190.
[48]H. M. Lee and C. M. Tsai, “Dual-band filter design with flexible passband and bandwidth selections,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1002–1009, May 2007.
[49]C. M. Tsai, S. Y. Lee, C. C. Chuang, and C. C. Tsai, “A folded coupledline structure and its application to filter and diplexer design,” in IEEE MTT-S Int. Microw. Symp. Dig., 2002, pp. 1927–1930.
[50]S. L. March, “Phase velocity compensation in parallel-coupled microstrip,” in IEEE MTT-S Int. Microw. Symp. Dig., 1982, pp. 410–413.
[51]R. Phromloungsri, M. Chongcheawchamnan, and I. D. Robertson, “Inductively compensated parallel coupled microstrip lines and their applications,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3571–3582, Sep. 2006.
[52]J. T. Kuo, W. H. Hsu, and W. T. Huang, “Parallel coupled microstrip filters with suppression of harmonic response,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 10, pp. 383–385, Oct. 2002.
[53]T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “wigglyline” filters with spurious passband suppression,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 9, pp. 1593–1598, Sep. 2001.
[54]Riddle, “High performance parallel coupled microstrip filters,” in IEEE MTT-S Int. Microw. Symp. Dig., 1988, pp. 427–430.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top