跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/12 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳家茂
研究生(外文):Chia-Mao Chen
論文名稱:米擠出物之玻璃轉換溫度與膨發行為
論文名稱(外文):The glass transition temperature and expansion behavior of rice extrudates.
指導教授:葉安義葉安義引用關係
指導教授(外文):An-I Yeh
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:126
中文關鍵詞:膨發玻璃轉換溫度擠壓直鏈澱粉升溫速率
外文關鍵詞:expansionglass transition temperatureextrusionriceamyloseheating rate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1780
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之目的為研究米製pellet的膨發行為,第一部分以三種不同的米穀粉(台中秈十號、台梗九號及台中秈糯一號)為原料,並將台中秈十號與台中秈糯一號依不同比例混合,研究直鏈澱粉含量對pellet膨發的影響。利用單軸擠壓機在進料水分50%下,製得各種不同的pellet,以飽和鹽溶液平衡含水量。以DSC決定玻璃轉換溫度(Tg),並以非接觸紅外線溫度計測定膨發起始表面中心溫度(Te)。Tg與Te主要受到含水量的影響,隨著含水量的增加而降低,直鏈澱粉含量對Tg與Te的影響並不顯著。於10%含水量時,Pellet有最佳膨發率,增加含水量使膨發率下降,直鏈澱粉含量亦影響膨發率,直鏈澱粉含量增加,pellet的透明度降低,膨發率也降低。
第二部分以台梗九號之米穀粉為原料,添加不同比例的糊精,擠壓時之進料水分為45~55%,製得各種不同的pellet,研究糊精對pellet膨發的影響,發現糊精的添加會降低內生性黏度,使原料的平均分子量降低,Tg與Te也降低。隨糊精添加量增加與進料水分增高,pellet有較佳之透明度,同時膨發率亦較高,顯示透明度可作為pellet品質管制的指標。
將Tg與Te作一比較,Te隨著Tg的增加呈線性的增加,其相關係數為0.95。Te 較Tg高約20~100℃,顯示pellet的膨發應在橡膠態發生。利用Gordon-Taylor方程式可用於估算米穀粉與水二元混合物之pellet的Tg(r2=0.89),針對米穀粉、水及糊精三元混合物所製得之pellet,已發展出一新方程式,可用於其Tg的估算((r2=0.88)。
加熱速率與水分散失速率會影響產品的膨發,當加熱速率大於水分散失速率,產品膨發;反之,產品不膨發或燒焦。由相圖之建立,討論Tg與Te,加熱速率於膨發過程中,所扮演的角色。
This study was to investigate the expansion behavior of rice pellets. To understand the role of amylose content, three different flours (TS10, TG9, TSG1)and reconstituted flour from TS10 and TSG1 were used to prepare pellet by single screw extrusion at 50% feeding moisture. The Tg and Te of pellets were determined using DSC and non-contact infrared thermometer, respectively. The results showed that amylose content did not significantly affect Tg and Te. But the increase in amylose content results in the decrease in both transparency and expansion ratio. The pellet exhibited maximum expansion ratio at equilibrium moisture of 10%.
Addition of dextrin resulted in the decrease in intrinsic viscosity, Tg and Te. The addition of dextrin and increase in feeding moisture resulted in more transparent pellet with higher expansion ratio. The data illustrated that the transparency can be an index of quality control.
Te increased linearly (r2=0.95) with Tg, which appeared to be a good reference temperature for studying expansion behavior. Te was about 20~100℃ higher than Tg. The expansion appeared to occur at rubbery state. The Tg of binary-mixture pellet (rice flour, water) can be estimated by using Gordon-Taylor equation. The method to estimate Tg for ternary-mixture pellet ( rice flour, dextrin, water) has also been discussed.
Heating method affected the temperature rising rate and water loss rate, which were important factors affecting the expansion of pellet. High temperature rising rate softened the pellet that can be expanded by the pressure exerted by water vapor. Low temperature rising was not able to generate flexible material resulted in burned out of the pellet. The established of phase diagram would be helpful to understand the roles of Tg, Te and heating method on expansion of pellet.
中文摘要----------------------------------------------- I
英文摘要----------------------------------------------- III
壹、 前言----------------------------------------------- 1
貳、 文獻整理------------------------------------------- 3
一、第三代點心食品------------------------------------- 3
二、食品擠壓技術--------------------------------------- 4
三、玻璃轉換溫度(Tg)----------------------------------- 8
 影響玻璃轉換溫度(Tg)的因素-------------------------- 10
 玻璃轉換溫度的測定---------------------------------- 15
 玻璃轉換溫度在食品上的應用-------------------------- 16
參、材料與方法----------------------------------------- 18
一、材料----------------------------------------------- 18
二、基本成分分析--------------------------------------- 18
三、糊化度的測定--------------------------------------- 23
四、pellet的製備--------------------------------------- 25
五、pellet平衡含水量的調節----------------------------- 28
六、玻璃轉換溫度(Tg)的測定------------------------------ 28
七、膨發起始表面中心溫度(Te)的測定---------------------- 29
八、膨發率的測定---------------------------------------- 33
九、固有黏度的的測定------------------------------------ 33
十、透明度的測定---------------------------------------- 34
十一、比機械能之計算------------------------------------ 34
十二、升溫速率、水分散失速率及水分散失百分率的測定------ 35
十三、數據分析------------------------------------------ 36
肆、結果與討論------------------------------------------ 38
一、直鏈澱粉含量對擠出物膨發的影響---------------------- 38
1.原料成分與pellet之平衡水分--------------------------- 38
2.膨發率------------------------------------------------ 38
3.固有黏度---------------------------------------------- 43
4.薄片密度--------------------------------------------- 45
5.透明度----------------------------------------------- 45
6.玻璃轉換溫度(Tg)與膨發起始表面中心溫度(Te)------------ 49
7.玻璃轉換溫度預測模式--------------------------------- 49
二、糊精之添加對擠出物膨發的影響----------------------- 55
1.原料成分--------------------------------------------- 55
2.擠出物之平均分子量----------------------------------- 55
3.糊化度----------------------------------------------- 58
4.不同含水量與糊精添加量pellet與玻璃轉換溫度之關係---- 58
5.烘烤溫度--------------------------------------------- 63
6.膨發起始溫度(Te)與玻璃轉換溫度(Tg)之關係-------------- 63
7.玻璃轉換溫度預測模式---------------------------------- 67
8.膨發率------------------------------------------------ 69
9.透明度------------------------------------------------ 70
10.比機械能--------------------------------------------- 70
三、加熱速率與水分散失速率對擠出物烘烤膨發之影響-------- 76
1.加熱過程中溫度之變化---------------------------------- 76
2.起始升溫速率與平衡含水量的關係------------------------ 76
3.溫度變化與水分散失百分率的關係------------------------ 79
4.升溫速率對水分散失速率之比值與水分散失百分率的關係---- 79
5.升溫速率與水分散失速率比值與膨發率的關係-------------- 82
6.溫度變化與含水量變化的關係---------------------------- 82
伍、結論------------------------------------------------ 86
陸、參考文獻-------------------------------------------- 88
附錄---------------------------------------------------- 95
吳閔憲(1996)利用擠壓加工技術生產低含油量馬鈴薯脆片。國立台灣大學食品科技研究所碩士論文。
AOAC. 1984. Official Methods of Analysis 14th edition. S. Williams ed. Association of Official Analytical Chemists: Washington, D.C.
Antonio, A. A. and Juliano, B. O.1973. Amylose content and puffed volume of parboiled rice. J. Food Sci. 38 : 915-916.
Attenburrow,G. E., Davies, Good and R. E., and Ingman, S. J. 1992. The Fracture behaviour of starch and gluten in the Glass State. J. Cereal Sci. 16:1-12.
Brent, J.L. Jr., Mulvaney, S.J., Cohen, C., and Bartsch, J.A. 1997. Thermomechanical glass transition of extruded cereal melts. J Cereal Sci. 26:301-312.
Chang, C. C. and Chien, J. T. 1997. Studies on microwave popping ratio of the dried Rice. J. Agri. Chem. Soc. 35(4) : 376-384.
Della Valle, G., Vergnes, B., Colonna, P., and Patria, A. 1997. Relations between rheological properties of molten starches and their expansion behaviour in extrusion. J. Food Eng. 31:277-296.
Donovan, J. W. and Mapes, C. J. 1980. Multiple phase transitions of starches and Nageli amylodextrinss. Starch/Starke 32 : 190-193.
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356.
Fan, J., Mitchell J. R., and Blanshard J. M. V. 1994. A computer simulation of the dynamics of bubble growth and shrinkage during extrudate expansion. J. Food Eng. 23 : 337-356.
Fan J., Mitchell, J. R., and Blanshard J. M. V. 1996. The effect of sugars on the extrusion of maize grits : I. The role of the glass transition in determining product density and shape. Inter. J. Food Sci. and Technol. 31 : 55-65.
Fan J., Mitchell, J. R., and Blanshard J. M. V. 1996. The effect of sugars on the extrusion of maize grits : II. Starch conversion. Inter. J. Food Sci. and Technol. 31 : 67-76.
Flink, J. M. Hawkes, J., Chen, H. and Wong, E. 1974. Properties of the frerze drying scorch temperature. J. Food Sci. 39 : 1244-1246.
Ferry, J. D. 1980. Viscoelastic properties of polymer, 3rd.ed. John wiley, New York.
Fox, T.G., and Flory, P.J. 1950. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21:581-591.
Geji-hansen, F. and Flink, M. 1977. Freeze-dried carbohydrates containing oil-in-water emulsion. : microstructure and fat distribution. J. Food Sci. 42 : 1049-1055.
Gibson, T. S., Solah, V. A. and McCleary, B. V. (1997). A procedure to measure amylose in cereal starchers and flours with concanavalin A. J. Cereal Science. J. Food Sci. 25(2) : 111-119.
Gordon, M., and Taylor, J.S. 1952. Ideal copolymers and the second-order transitions of synthetic rubbers I. Non-crystalline copolymers. J. Appl. Chem. 2(9): 493-500.
Greenwood, C.T. 1964. Viscosity-molecular weight relations. Pages 179-188 in: Methods in Carbohydrate Chemistry Vol. IV. R.L. Whistler ed. Academic Press: New York.
Harper, J. M. 1981. Extrusion of foods. Vol. I&II. CRC Press, Florida.
Huang, C.H. 1987. Rice Varieties in Taiwan. Pages 284-285, Published by Council of Agriculture, Republic of China.
Huang, R. M., Chang, W. H., Chang Y. H., and Lii, C. Y. 1994. Phase transition of rice starch and flour gels. Cereal Chem. 71(2) : 202-207.
Juliano, B.O. 1984. Rice Starch. Pages 507-528 in: Starch:Chemistry and Technology. 2nd edition. R.L. Whistler, J.N. BeMiller, and E.F. Paschall, eds. Academic Press, Inc.: Orlando, FL.
Kainuma, K., Matasunaga, A., Itagawa, M., and Kobayashi, S. 1981. New enzyme system -  - amylase - pullulanase - to determine the degree of gelatinization and retrogradation of starch or starch products. J. Jpn. Soc. Starch Sci. 28 (4):235-240.
Kaletunc, G., and Breslauer, K. J. 1993. Glass transitions of extrudates : Relationship with processing induced fragmentation and end-product attributes. Cereal Chem. 70 : 548-552.
Kaletunc, G., and Breslauer, K. J. 1996. Construction of a wheat-flour state diagram. Application to extrusion processing. J. Thermal Analysis 47 : 1267-1288.
Kalichevsky, M. T. Jaroszkiewicz, E. M. and Blanshard, J. M. V. 1993. A study of the glass transition of amylopectin-sugar mixture. Polymer. 34 : 346-358.
Kalichevsky, M. T. Jaroszkiewicz, E. M. Ablett, S., Blanshard, J. M. V. and Lilford, P. J. 1992. The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr. Polym. 18 : 77-88.
Kokini, J. L., Cocero, A. M., Madeka, H. and Graaf, E. 1995. The development of state diagrams for cereal proteins. Trends in Food Sci. and Technol. 51 : 281-288.
Kokini, J. L., Cocero, A. M., and Madeka, H. 1995. State diagrams help predict rheology of cereal proteins. Food Technol. 49(10) : 74-81.
Labuza, T.P., Acott, K., Tatini, S.R., and Lee, R.Y. 1976. Water activity determination: A collaborative study of different methods. J. Food Sci. 41:910-917.
Lee, H.S., and Kim, W.N. 1997. Glass transition temperatures and rigid amorphous fraction of poly (ether ether ketone) and poly (ether imide) blends. Polymer 38(11): 2657-2663.
Levine, H., and Slade, L. 1988. Collapse phenomena: A unifying concept for interpreting the behaviour of low moisture foods. Pages 149-180 in: Food Structure: Its Creation and Evaluation. J.M.V. Blanshard and J.R. Mitchell, eds. Butterworths Co.: London.
Le Maste, M., Huang, V. T., Panama, J., Anderson, G., and Lentz, R. 1992. Glass transition of bread. Cereal Foods World 37 (3) : 264-267.
Lii, C. Y., Tsai, M. L., and Tseng, K. H. 1996. Effect of amylose content on the rheological property of rice starch. Cereal Chem. 73(4):415-420.
Mahanta, C.L., and Bhattacharya, K.R. 1989. Thermal degradation of starch in parboiled rice. Starch/Starke 41:91-94.
Matz, S.A. 1984. Puffed Snacks. Pages 150-165 in: Snack Food Technology, 2nd edition, S.A. Matz, ed. AVI Publishing Co., Inc.: Westport, Connecticut.
Mercier, C., and Fillet, P. 1975. Modification of carbohydrate components by extrusion-cooking of cereal products. Cereal Chem. 52:283-297.
Nicholls, Appelqvist, I. A. M., Davies, A. P. Ingman, S. J., and Lillford P. J. 1995. Glass transitions and the fracture behaviour of gluten and starches within the glass state. J. Cereal Sci. 21:25-36.
Noel, T.R., Ring, S.G., and Whittam, M.A. 1990. Glass transition in low moisture foods. Trends in Food Sci. & Technol. 1:62-67.
Orford, P.D., Parker, R., and Ring, S.G. 1990. Aspects of the glass transition behaviour of mixtures of carbohydrates of low molecular weight. Carbohydrate Research 196:11-18.
Orford, P.D., Parker, R., Ring, S.G., and Smith, A.C. 1989. Effect of water as a diluent on the glass transition behaviour of malto-oligosaccharides, amylose, and amylopectin. Int. J. Biol. Macromol. 11:91-96.
Padmanabhan, M. and Bhattacharya, M. 1989. Extrudate expansion during extrusion cooking of foods. Cereal Foods World 34(11) : 945-949.
Resnik, S. L., Favetto, G. Chirife, J. and Fontan, C. F. 1984. A world survey of water activity of selected saturated salt solution used as standard at 25℃. J. Food Sci. 49 : 510-513.
Roos, Y., and Karel, M. 1991. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J. Food Sci. 56:1676-1681.
Ross, A. S., Mcmaster, G. J., and Tomlinson, J. D. 1992. Effect of dextrans of differing molecular weights on the rheology of wheat flour doughs and the quality characteristics of pan and arabic breads. J/ Sci. Food Agric. 60:91-98.
Sapru, V. and Labuza, T. P. 1993. Glassy state in bacterial spores predicted by polymer glass transition theory. J. Food Sci. 58 : 445-448.
Sokolov, A. P. 1996. Why the glass transition is still interesting. Science 273 (20) : 1675-1676.
Sperling, L.H. 1993. Glass-rubber transition behavior. Pages 303-381 in: Introduction to Physical Polymer Science. L.H. Sperling, ed. John Wiley & Sons:New York.
Sunderland, R. 1996. Production of third generation snacks. Cereal Food World. 41 (1):12-14.
Tant, M.R., and Wilkes, G.L. 1981. An overview of the nonequilibrium behavior of polymer glasses. Polymer Eng. & Sci. 21:874-895.
Tolstoguzov, V. B. 1993. Thermplastic extrusion-the mechanism of the formation of extrudate structure and properties. JAOCS, 70(4) : 417-424.
Van Soest, J.J.G., and Knooren, N. 1997. Influence of glycerol and water content on the structure and properties of extruded plastic sheets during aging. J. Appl. Poly. Sci. 64 : 1411-1422.
Van Soest, J.J.G., Benes, K., De Wit, D., and Vliegenthart, J.F.G. 1996. The influence of starch molecular mass on the properties of extruded thermoplastic starch. Polymer 37(16) : 3543-3552.
Yeh, A.-I., and Hwang, J.-U. 1995.The effect of die shape on velocity profile of extrudate using a single-screw extruder.J.Food Eng.25(2) : 209-
222.
Yeh, A.-I., and Jaw, Y.-M. 1998. Modeling residence time distributions for single screw extrusion process. J. Food Eng. 35:211-231.
Yeh, A-I, Wu, T.-Q., and Jaw, Y.-M. 1999. Starch transitions and their influence on flow pattern during single-screw extrusion cooking of rice flour. Trans IChem E, 77 (Part C):47-54.
Young, A.H. 1984. Fractionation of Starch. Pages 249-283 in Starch : Chemistry and Technology. 2nd edition R.L. Whistler, J.N. BeMiller, and E.F. Paschall, eds. Academic Press, Inc.: Orlando, FL.
Yun, S.-H. and Matheson, N. K. (1990). Estimation of amylose content of starches after precipitation of amylopectin by concanavalin-A. Starch/Starke.42 : 302-305.
Zeleznak, J., and Hoseney, R. C. 1987. The glass transition in starch. Cereal Chem. 64(2):121-24.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊