跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝易珊
研究生(外文):Yi-san Hsieh
論文名稱:結構振型探討牙科植體術後臨床骨缺損
論文名稱(外文):The Mode shape of structures Assess Clinical Bone Defects after Dental Implantation
指導教授:潘敏俊
指導教授(外文):Min-chun Pan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:94
中文關鍵詞:牙科植體骨缺損共振頻率模態分析簡諧分析局部模態振型
外文關鍵詞:Dental implantBone defectResonant frequencyModal analysisHarmonic analysisLocal mode shape
相關次數:
  • 被引用被引用:1
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以結構振型探討牙科植體術後臨床骨缺損檢測課題,透過數值分析方法,找出植體/下顎骨局部模態植體振型及共振頻率,以利於評估骨缺損程度。研究分兩部份,第一部份為有限元素法分析,使用結合與摩擦兩種植體與下顎骨接觸條件,分別模擬臨床之植牙骨整合與以人造下顎骨進行實驗之情況,由模態分析獲得植體/下顎骨之自然頻率與振型,透過簡諧分析分別得到植體在頰舌側及近遠心側之響應。第二部份為聲能激振-位移響應實驗,以喇叭之聲能激振植體/下顎骨結構,並以非接觸式電容式位移計量測振動響應訊號,後續和Osstell III檢測儀量測結果作比較。
模擬結果顯示,結構產生植體局部模態振型時,檢測骨整合穩固度成效較明顯,而非接觸式聲能激振-位移響應實驗,受限於高頻響應位移小,以及位移計量測動態範圍、訊雜比低,對於高頻局部模態實驗效果不佳,僅能測得下顎骨低頻整體共振,不同缺損型態之共振頻率差異不大;另以Osstell III檢測儀可明確評估骨缺損程度。故上述模擬與實驗結果可證實需以植體局部模態之共振頻率進行骨缺損檢測。
The aim of this study is to assess clinical bone defects between an implant and jaw bone after dental implantation by examining the mode shape of structures. Different severity of bone defects was evaluated through structure resonant frequencies and corresponding mode shapes of the implant and jaw bone by using numerical analysis and experimentation. This study consists of two parts. First, the assumption of two kinds of boundary conditions, bonding and rubbing, was applied to simulate osseointegration in the clinical dentistry and the in-vitro bone defect model, respectively, in finite element analysis. Natural frequencies and their mode shapes of the implant/jaw were computed by the modal analysis. During the harmonic analysis, the response displacement versus frequency of implant in the buccolingual and mesiodistal directions were defined. Secondly, the structural resonant frequencies were measured by the acoustic excitation-displacement response procedure, and then this result was compared with using the detection of Osstell mentor.
The simulation results show that the structure local mode corresponding high-frequency resonance can be used to examining bone imperfection remarkably. Limited by extremely tiny response displacement, measuring dynamic range of the capacitive displacement sensor, the acoustic excitation-displacement response measurement can only acquire the structure global mode of the mandible corresponding to low-frequency resonance. In addition, Osstell mentor can assess bone defects effectively. Therefore, the above-mentioned simulations and experimental results prove that the local mode is promising to evaluate the defect severity for the osseointegration of dental implantation.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究範疇 7
第二章 數值分析理論 8
2.1有限元素法分析 8
2.2模態分析 9
2.3簡諧分析 11
第三章 體外下顎骨缺損模型數值分析與實驗 13
3.1體外下顎骨模型設計 14
3.2數值模擬 16
3.2.1模態分析 16
3.2.2簡諧分析 19
3.3實驗方法 22
3.3.1聲能激振-位移響應實驗 23
3.3.2Osstell III檢測儀量測實驗 24
第四章 下顎骨缺損模型檢測結果與討論 25
4.1模擬分析結果 25
4.1.1結合(Bonded)接觸條件 26
4.1.2摩擦(Frictional)接觸條件 40
4.1.3結合與摩擦條件之差異 45
4.2體外模型實驗結果 47
4.2.1聲能激振-位移響應結果 47
4.2.2Osstell III量測結果 50
4.3結論 53
第五章 未來與展望 54
參考文獻 55
附錄A-第二臼齒 59
附錄B-第三臼齒 70
[1] Branemark, P. I., Brerine, U.and Adell, R., “Intraosseous Anchorage of Dental Prosthess: I Experimental Studies,” Scand J Plast Reconstar Surg, pp. 81-100 (1963).
[2] Brunski, J. B., The Influence of Force, Motion and Related Quantities on the Responseof Bone to Implants, Raven Press Ltd. (1998).
[3] 王大介,「利用共振頻率分析法研究植體在類似不同骨密度環境下之穩固度」,碩士論文,國防醫學院牙醫科學研究所,臺北 (2004)。
[4] Bogaerde, L. D., “A Proposal for the Classification of Bony Defects Adjacent to Dental Implants,” International Journal of Periodontics and Restorative Dentistry, Vo1. 24, pp. 264-271 (2004).
[5] 莊瀚伯,「牙科植體術後骨缺損型態之結構分析」,碩士論文,國立中央大學機械工程研究所,桃園 (2006)。
[6] 陳梓尉,「共振頻率法於牙根植體缺損位置判別研究」,碩士論文,國立中央大學機械工程研究所,桃園 (2007)。
[7] 杜瑋珊,「共振頻率法之牙科植體個體骨缺損檢測研究」,碩士論文,國立中央大學機械工程研究所,桃園 (2009)。
[8] 吳柏勳,「植牙術後穩固度評估研究」,碩士論文,國立中央大學 機械工程研究所,桃園 (2011)。
[9] Albrektsson, T. and Albrektsson, B., “Osseointehration of Bone Implants: a Review of an Alterative Mode of Fixation,” Acta Orthopaedica Scandinavica, Vol. 58, pp. 567-577 (1987).
[10] Johansson, C. B. and Albreksson, T., “Integration of Screw Implants in the Rabbit: a One-Year Follow-up of Removal Torque of Titanium Implants,” International Journal of Oral and Maxillofacial Implants, Vol. 2, No. 2, pp. 69-76 (1987).
[11] Oka, H., Yamamoto, T., Saratani, K. and Kawazoe, T., “Application of Mechanical Mobility of Periodontal Tissues to Tooth Mobility Examination,” Medical & Biological Engineering & Computing, Vol. 27, No. 1, pp. 75-81 (1989).
[12] 陳璟鋒,「利用共振頻率初始值預測牙科植體之癒合時間及可能穩定值:以動物實驗及離體實驗」,碩士論文,臺北醫學大學口腔復健醫學研究所,臺北 (2003)。
[13] Leholm, U. and Zarb, G. A., “Tissue-Integrated Prostheses: Osseointegration in Clinical Denisity,” Quintessence Publishing, Chicago(IL), pp. 199-209 (1985).
[14] Sunden, S., Grondahl, K. and Grondahl, H. G., “Accuracy and Precision in the Radiographic Diagnosis of Clinical Instability in Brånemark Dental Implants,” Clinical Oral Implants Research, Vol. 6, No. 4, pp. 220-226 (1995).
[15] 李友順,「開發臨床骨密度儀之研究」,碩士論文,國立成功大學醫學工程研究所,臺南 (2005)。
[16] Singh, R, The Design Fabrication and Characterization of an Ultrasonic Crack Detection System for Human Teeth, PhD Thesis, University of California Los Angles, California (2005).
[17] Thomson, W. T., Theory of Vibration with Applications, Prentice-Hall, New York, pp. 221-229 (1995).
[18] Meredith, N., Alleyne, D. and Cawley, P., “Quantitative Determination of the Stability of the Implant-Tissue Interface Using Resonance Frequency Analysis,” Clinical Oral Implants Research, Vol. 7, No. 3, pp. 261-267 (1996).
[19] Sennerby, L. and Meredith, N., “Impant Stability Measurements Using Resonance Frequency Analysis: Biological and Biomechanical aspects and Clinical Implications,” Periodontology 2000, Vol. 47, pp. 51-66 (2008).
[20] Rasmusson, L., Meredith, N., Cho, I. H. and Sennerby, L., ”The Influence of Simultaneous versus Delayed Placement on the Stability of Titanium Implants in Onlay Bone Grafts: A Histologic and Biomechanic Study in the Rabbit,” International Journal of Oral and Maxillofacial Surgery, Vol. 28, pp. 224-231 (1999).
[21] Tözüm, T. F., Turkyilmaz, I. and McGlumphy, E. A., “Relationship between Dental Implant Stability Determined by Resonance Frequency Analysis Measurements and Peri-implant Vertical Defects: an in Vitro Study,” Journal of Oral Rehabilitation, Vol. 35,pp. 739-744 (2008).
[22] Tözüm, T. F., Turkyilmaz I. and Bal, B. T., “Initial Stability of Two Dental Implant Systems: Influence of Buccolingual Width and Probe Orientation on Resonance Frequency Measurements,” Clinical Implant Dentistry and Related Research, Vol. 12, No. 3, pp. 194-201 (2010).
[23] Tözüm T. F., Bal B. T., Turkyilmaz I.and Gulay, G., “Which Device is more Accurate to Determine the Stability/Mobility of Dental Implants? A Human Cadaver Study,” Journal of Oral Rehabilitation, Vol. 37, pp. 217-224 (2010).
[24] Lee, S. Y., Huang, H. M., Lin, C. Y. and Shih, Y. H., “In vivo and in vitro Natural Frequency Analysis of Periodontal Conditions, an Innovative Method,” Journal of Periodontal Research, Vol. 71, No. 4, pp. 632-640 (1999).
[25] Huang, H. M., Lee, S. Y., Yeh, C. Y. and Lin, C. T., “Resonance Frequency Assessment of Dental Implant Stability with Various Bone Qualities : a Numerical Approach,” Clinical Oral Implants Research, Vol. 13, pp. 65-74 (2002).
[26] Natali, A. N., Pavan, P. G., Schileo, E. and Williams, K. R., “A Numerical Approach to Resonance Frequency Analysis for the Investigation of Oral Implant Osseointegration,” Journal of Oral Rehabilitation Res,.Vol.33, No.9, pp. 674–681 (2006).
[27] Pattijn, V., Van Lierde, C., Van Der Perre, G., Naert, I. and Vander Sloten, J., “The Resonance Frequencies and Mode Shapes of Dental Implants: Rigid Body Behaviour versus Bending Behaviour. A Numerical Approach,” Journal of Biomechanics, Vol. 39, No. 5, pp. 939-947 (2006).
[28] Swider, P., Guérin, G., Baas J., Søballe, K. and Bechtold, J. E., “Characterization of Bone-implant Fixation Using Modal Analysis: Application to a Press-fit Implant Model,” Journal of Biomechanics, Vol. 42, pp. 1643-1649 (2009).
[29] Lee, L. Y., Huang, H. M., Hung, J. M., Chou, S. Y., Lee, S. Y., Chiu, W. T., Tsai, C. M., Lo, Y. C. and Lin, C. T., “Dynamic Response Analysis of the Mechanism of Mandible Trauma,” Chinese Journal of Dental Research, Vol 23, No.4, pp. 304-312 (2004).
[30] He, J. and Fu, Z. F., Modal Analysis, Butterworth-Heinemann, Oxford. (2001).
[31] Mellal, A., Wiskott, H. W. A., Botsis, J., Scherrer, S. S. and Belser U. C., “Stimulating Effect of Implant Loading on Surrounding Bone Comparison of Three Numerical Models and Validation by In Vivo Data,” Clinical Oral Implants Research, Vol. 15, pp. 239-248 (2004).
[32] Virani, N. A., Harman, M. ,Li, K., Levy, J., Pupello, D. R. and Frankle, M. A., “In Vitro and Finite Element Analysis of Glenoid Bone/Baseplate Interaction in the Reverse Shoulder Design,” Journal of Shoulder and Elbow Surgery, Vol. 17, pp. 509-521 (2008).
[33] 劉晉奇,褚晴暉,有限元素分析與 ANSYS 的工程應用,滄海 (2006)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊