跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:韓宗翰
研究生(外文):Tsung-Han Han
論文名稱:鹵化有機化合物及離子液體自燃溫度之研究
論文名稱(外文):A Study of Auto-Ignition Temperatures for Halogenated Organic Compounds and Ion Liquids
指導教授:陳強琛
指導教授(外文):Chan-Cheng Chen
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:148
中文關鍵詞:鹵化合物自燃溫度(Auto-ignition temperature離子液體ASTM E659AIT)
外文關鍵詞:halogenated organic compoundsAuto-ignition temperatureion liquids
相關次數:
  • 被引用被引用:1
  • 點閱點閱:455
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來工業蓬勃發展,石化工業與高科技產業均大量使用可燃性化學品,因
此認知、瞭解易燃液體燃燒特性在預防火災爆炸之發生是不容忽視的議題。自燃
溫度 (Auto-ignition temperature, AIT)是易燃性液體燃燒特性的主要參考指標之一,
例如美國消防協會(National Fire Protection Association, NFPA) NFPA 70 規範防爆電
器設備的等級是以可燃性蒸氣的自燃溫度作為依據。然而,目前不同文獻資料上
的自燃溫度數據有相當的差異且亦未提及其資料來源,因此有系統的整理自燃溫
度的相關資料有其急迫的重要性。
本研究採用ASTM E659-78 的標準試驗方法進行鹵化有機化合物(溴氯化物、
醚類及烯類)及離子液體自燃溫度自燃溫度之量測,利用ASTM E1356 試驗方法
進行化學物質量測熱分解溫度。
試驗結果與NFPA 497 提供數據比較後發現,除了2-氯丙烷與二丙二醇甲醚自
燃溫度數據超過ASTM E659 試驗方法合理5%誤差,其餘物質試驗結果與
NFPA497 所提供的數據差異在5%試驗誤差以內。從DSC 試驗結果來看,本研究
試驗苄醯氯、α-甲基苯乙烯、1-乙基-3-甲基咪唑硫酸乙酯三個物質出現峰值的起始
溫度與結束溫度區間,傳統有機化合物皆為放熱反應,與燃燒反應機制是一致的
現象。試驗探討的2 種離子液體是先吸熱而放熱,推測物質行分離或裂解反應,
表示離子液體結構發生改變,且試驗量測的自燃溫度是落在熱分解結束後。
In recent years, a large quantity of flammable liquids are used in both
petrochemical industries and high-tech industries, therefore recognition and
understanding the hazardous characteristics of these flammable liquids are important
issues for preventing the fire hazard or explosion hazard. Auto-ignition temperature
(AIT) is one of the major attributes for assessing the flammability characteristics of a
liquid. For example, National Fire Protection Association 70 code (NFPA 70), in
Article 500.8, provides that “Class I equipment shall not have any exposed surface that
operates at a temperature in excess of the ignition temperature of the specific gas or
vapor.”
Although AIT is indispensable information to safely handle and operate the
flammable materials, the discrepancy of AIT in different data compilations is, however,
very much appreciable. Thus, it is indispensible to systematically re-assess the AIT of
flammable liquids. In this study, the ASTM E659-78 Method are adopted to measure the
AITs of some halogenated organic compounds and two ionic liquids and the ASTM
E1356 test method is adopted to assess whether the ignition comes from the combustion
or decomposing of the tested compound.
Compare the results of seven investigated chemicals with the values reported in
NFPA 497, except for the cases of isopropyl chloride and dipropylene glycolmethyl
ether, all the results are within the experimental reproducibility. DSC experiments are
conducted on benzoyl chloride, α-methyl styreneand 1-ethyl-3-methylimidazolium
ethylsulfate, and it is found that their AIT are all between the onset temperature and end temperature of the DSC curve. As the auto-ignition temperature of ionic liquids is
around their decomposition temperature, it strongly suggests that ion-liquids are
decomposed at the AIT rather than being burned at AIT.
中文摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
第一節 研究背景 1
1.1.1 自燃溫度之定義 1
1.1.2 自燃溫度之重要性與應用性 2
第二節 研究目的 7
1.2.1 傳統有機化合物與離子液體之燃燒特性 7
1.2.2 Semenov熱自燃理論、著火延遲時間與自燃溫度關係 8
1.2.3 DSC差式熱掃描儀之應用 9
第二章 文獻探討 10
第一節 影響自燃溫度試驗之因素 10
第二節 自燃溫度之試驗方法 12
第三節 傳統有機化合物與離子液體之燃燒結果 16
第三章 研究材料與方法 18
第一節 藥品試劑 18
第二節 試驗設備與方法 20
3.2.1 自燃點測試儀 20
3.2.1.1 試驗步驟 22
3.2.2 DSC差式熱掃描儀 25
3.2.2.1 DSC測試原理 26
3.2.2.2 試驗步驟 27
第三節 Semenov熱自燃理論 29
第四節 著火延遲時間與自燃溫度之理論模式 34
第五節 Equivalence Ratio計算 38
第四章 傳統有機化合物與離子液體自燃特性探討 39
第一節 溴氯化物之試驗結果 39
4.1.1 溴氯化物之燃燒特性 39
4.1.2 Semenov自燃理論、著火延遲時間與自燃溫度之關係 46
第二節 醚類、烯類物質之試驗結果 57
4.2.1 醚類、烯類物質之燃燒特性 57
4.2.2 Semenov自燃理論、著火延遲時間與自燃溫度之關係 65
第三節 離子液體之試驗結果 74
4.3.1 離子液體之燃燒特性 74
4.3.2 Semenov自燃理論、著火延遲時間與自燃溫度之關係 77
第四節 DSC試驗結果 81
第五章 討論 85
第一節 自燃溫度試驗結果之差異 85
第二節 可燃物質的自燃溫度之活化能 88
第三節 傳統有機化合物與離子液體之自燃方式 89
第六章 結論 90
第一節 結論 90
6.1.1 傳統有機化合物與離子液體之自燃特性 90
6.1.2 Semenov熱自燃理論、著火延遲時間與自燃溫度關係 92
6.1.3 DSC結果探討 93
第二節 應用與建議 94
參考文獻 95
附錄 傳統有機化合物與離子液體物化特性及試驗結果 1
附錄A 溴氯化物物化特性及試驗結果 1
A-1 Isopropyl chloride 物理及化學性質 1
A-2 Butyl chloride 物理及化學性質 3
A-3 Isobutyl chloride 物理及化學性質 5
A-4 Pentyl chloride 物理及化學性質 7
A-5 Pentyl bromide 物理及化學性質 9
A-6 Chlorocyclohexane 物理及化學性質 11
A-7 Benzoyl chloride 物理及化學性質 13
附錄B 醚類與烯類物質物化特性及試驗結果 15
B-1 1-Methoxy-2-propanol 物理及化學性質 15
B-2 Allyl glycidyl ether 物理及化學性質 17
B-3 Isopropyl epoxypropyl ether 物理及化學性質 20
B-4 Dipropylene glycol monomethyl ether 物理及化學性質 23
B-5 Cyclohexene 物理及化學性質 25
B-6 1-Hexene 物理及化學性質 27
B-7 a-Methyl styrene 物理及化學性質 29
附錄C 離子液體物化特性及試驗結果 31
C-1 1-Ethyl-3-methylimidazolium ethylsulfate 物理及化學性質 31
C-2 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 物理及化學性質 33
[1]Semenov, A.N.N, 1959, “Some Problems of Chemical Kinetics and Reactivity”, Pergamon Press, vol. 2.
[2]ASTM International. ASTM E659-78, 2005, Standard Test Method for Autoignition Temperature of Liquid Chemicals.
[3]Washington, DC, 1998, ANSI/API RP 500, Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class 1, Division 1 and Division 2.
[4]Washington, DC, 1998, ANSI/API RP 505, Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities Classified as Class 1, Zone 0, Zone1, and Zone 2.
[5]中國國家標準 CNS 3376,2008,台北,一般用電機具防爆構造通則。
[6]Washington, DC, 2000, ANSI/API RP 581, Risk-based inspection base resource document, American Petroleum Institute.
[7]L. G. Britton, K. L. Cashdollar, W. Fenlon, D. Frurip, J. Going, B. K. Harrison, J. Niemeier, and E. A. Ural, 2005, “The Role of ASTM E27 Methods in Hazard Assessment Part II: Flammability and Ignitability”, Process Safety Progress, 24(1), pp. 12-28.
[8]防爆電氣設備技術服務網,網址:http://explo.cla.gov.tw/
[9]B.E. Mitchel, P.C. Jurs, 1997, “Prediction of Autoignition Temperatures of Organic Compounds from Molecular Structure”, J. Chem. Inf. Comput., 37: pp.538-547.
[10]American Institute of Chemical Engineers(AIChE), Design Institute for Physical Properties(DIPPR®). Project 801 Pure Component Data public version (2009).
[11]The Chemical Database. The World Wide Web:http://ull.chemistry.uakron.edu/erd/index.html.
[12]IPCS INCHEM. The World Wide Web:http://www.inchem.org/pages/icsc.html.
[13]江洋洋,劉會洲,郭晨,余江,安震濤,2007, “固定化離子液體在催化與分離方面的應用進展” The Chinese Journal of Process Engineering 第7 卷,第1 期,2月。
[14]Hong Xue, Rajendar Verma, Jean’ne M. Shreeve, 2006, “Review Of Ionic Liquids With Fluorine-Containing Anions”, J. of Fluorine Chem. Vol. 127, pp.159–176.
[15]Dandan Han and Kyung Ho Row, 2010, “Recent Applications of Ionic Liquids in Separation Technology”, J. of molecules, 15, pp.2405-2426
[16]吳榮宗,2005,“離子液體特性及其在催化反應上之應用”,石油季刊,Vol. 41 No.2,6月。
[17]徐通模,惠世恩,2010,燃燒學,一版,機械工業出版社。
[18]程春生,秦福濤,魏振雲,2011,化工安全生產與反應風險評估,一版,化學工業出版社。
[19]C. C. Chen, Y. C. Hsieh, 2010, “Effect of Experimental Conditions on Measuring Autoignition Temperatures of Liquid Chemicals.” Ind. Eng. Chem. Res., 49, pp. 5925–5932.
[20]T. Suzuki, 1994, “Quantitative Structure–Property Relationships for Auto-Ignition Temperatures of Organic Compounds”, Fire Mater., 18, pp.81–88.
[21]F. Y. Hshieh, J. M. Stoltzfus, H. D. Beeson, 1996, “Autoignition Temperature of Selected Polymer at Elevated Oxygen Pressure and Their Heat of combustion.” Fire Mater., 20, pp. 301-303.
[22]F. Y. Hshieh, D. B. Hirsch, J. H. Williams, 2002, “Autoignition Temperature of Trichlorosilanes.” Fire Mater., 26, pp. 289-290.
[23]R. Zalosh, J.Casey, 2009, “Autoignition Temperature Data and Scaling for Amide Solvents.” J. of Loss Prev. in Process Ind., 22, pp. 1–6.
[24]DIN-Sprachendienst. DIN 51794, 2003, “Determining The Ignition Temperature of Petroleum Products”.
[25]International Electro-technical Commission. IEC 79-4, 1975, “Electrical Apparatus For Explosive Gas Atmosphere, Part 4: Method of Test for Ignition Temperature”.
[26]Chemical Risk Prevention, 2007, “Methods for Determining the Physico-Chemical Properties under REACH”, France.
[27]C. C. Chen, H. J. Liaw, C. M. Shu, Y. C. Hsieh, 2010, “Autoignition Temperature Data for Methanol, Ethanol, Propanol, 2-Butanol, 1-Butanol, and 2-Methyl - 2,4-pentanediol”, J. Chem. Eng. Data, 55, pp.5059–5064.
[28]D. M. Fox, W. H. Awad, J. W. Gilman, P. H. Maupin, H. C. De Long and P. C. Trulove., 2003, “Flammability, Thermal Stability, and Phase Change Characteristics of Several Trialkylimidazolium Salts”, Green Chemistry., 5, pp.724-727.
[29]D. M. Fox, W. H. Awad, J. W. Gilman, P. H. Maupin, H. C. De Long and P. C. Trulove.,2005, “Thermal and Kinetic Studies of Trialkylimidazolium Salts”, American Chemical Society, 15, pp.193-206.
[30]H. J. Liaw, C. C. Chen, Y. C. Chen, J. R. Chen, S. K. Huang and S. N. Liu., 2012, “Relationship between flash point of ionic liquids and their thermal decomposition”, Green Chemistry, 14, pp.2001-2008.
[31]ASTM International. ASTM E1356-08, 2008, “Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry”.
[32]NFPA 497, 2008, ”Recommended Practice for the Classification of Flammable Liquids, Gases, or Vapors and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas”, NFPA, pp.9-14.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top