|
[1] 李啟毓,「以混合評估函數及粒子群最佳化作影像分割」,國立中正大學,碩士論文,民國九十六年。 [2] 郭奕宏,「粒子群最佳化及其應用」,國立臺灣科技大學,碩士論文,民國九十七年。 [3] 蕭方智,「應用階層式粒子群方法於模糊決策樹之研究」,元智大學,碩士論文,民國九十四年。 [4] Azar, D., Harmanani, H., Korkmaz, R., “A Hybrid Heuristic Approach to Optimize Rule-Based Software Quality Estimation Models”, Information and Software Technology, 51, pp. 1365-1376, 2009. [5] Azuma, M., “Software Products Evaluation System: Quality Models, Metrics and Processes–International Standards and Japanese Practice”, Information and Software Technology, 38, pp. 145-154, 1996. [6] Catal, C., Sevim, U., Diri, B., “Clustering and Metrics Thresholds Based Software Fault Prediction of Unlabeled Program Modules”, Sixth International Conference on Information Technology: New Generations, pp. 199-204, 2009. [7] Catal, C., Diri, B., “A Systematic Review of Software Fault Prediction Studies”, Expert Systems with Applications, 36, pp. 7346-7354, 2009. [8] Chen, L. W., Huang, S. J., “Accuracy And Efficiency Comparisons of Single- and Multi-Cycled Software”, Information and Software Technology, 51, pp. 173-181, 2009. [9] Chen, M. S., Han, J., Yu, P. S., “Data Mining: an Overview Froma Database Perspective”, IEEE Transactions on Knowledge and DataEngineering, 8, pp. 866-883, 1996. [10] Derniame, J. C., Kaba, B. A., Wastell, D., “Software Process: Principle, Methodology and Technology”, Lecture Notes in Computer Science, 1500, 1999. [11] Deepa, P., Gopinath, V., Chandra, S. S., Veena, S.G., Achuthsankar, S., “A Hybrid Duration Model Using CART And HMM”, IEEE Region 10 Conference, pp. 19-21, 2008. [12] Eberhart, R. C., Shi, Y., “Particle Swarm Optimization: Developments, Application and Resources”, Evolutionary Computation, 1, pp. 81-86, 2001. [13] Freitas, A., “A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery”, Advances Inevolutionary Computation, pp. 819-845, 2002. [14] Fei, B., Liu, J., ”Binary Tree of SVM: A New Fast Multiclass Training and Classification Algorithm”, IEEE Transactions on Neural Networks, 17, pp. 696-704, 2006. [15] Falco, I., Della Cioppa, A., Tarantino, E.,“Evaluation of Particle Swarm Optimization Effectiveness in Classification”, Lecture Notes in Computer Science, 3849, pp. 164-171,2006. [16] Gondra, I., “Applying Machine Learning to Software Fault-Proneness Prediction”, Journal of Systems and Software, 81, pp. 186-195, 2008. [17] Gustafson, S., Vanneschi, L., “Crossover-Based Tree Distance in Genetic Programming”, IEEE Transactions on Evolutionary Computation, 12, pp. 506-524, 2008. [18] Garc, S., Herrera, F., ”Evolutionary Training Set Selection to Optimize C4.5 in Imbalanced Problems”, Hybrid Intelligent Systems, pp. 567-572, 2008. [19] Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., Paulk, M., “Software Quality and The Capability Maturity Model”, Communication of the ACM, 40, pp. 30-40, 1997. [20] Hu, X., Shi, Y., Eberhart, R. C., “Recent Advances in Particle Swarm”, Evolutionary Computation, 1, pp. 90-97, 2004. [21] Jorgensen, M., “Software Quality Measurement”, Advances in Engineering Software, 30, pp. 907-912, 1999. [22] Kennedy, J., Eberhart, R. C., “Particle Swarm Optimization”, Proceedings of the 1995 IEEE International Conference on Neural Networks, 4, pp. 1942-1948, 1995. [23] Kass, G., “An Exploratory Technique for Investigating Large Quantities of Categorical Data”, Applied Statistics, 29, pp. 119-127, 1980. [24] Li, Z., Alaeddine, N., Tian, J., “Multi-Faceted Quality and Defect Measurement for Web Software and Source Contents”, Journal of Systems and Software, 83, pp. 18-28, 2010. [25] Loh, W. Y., Shih, Y. S., “Split Selection Methods for Classification Trees”, Statistica Sinica, 7, pp. 815-840, 1997. [26] Mill, J., Inoue, A., “Support Vector Classifiers and Network Intrusion Detection”, Proceedings of IEEE International Conference on Fuzzy Systems, 1, pp. 407-410, 2004. [27] Phan, D. D., “Software Quality and Management: How The World’s Most Powerful Software Makers Do It”, Information System Management, pp. 1-12, 2001. [28] Parziger, M. J., Nath, R., “A Study of Relationships Between Total Quality Management Implementation Factors and Software Quality”, Total Quality Management and Business Excellence, 11, pp. 353-371, 2000. [29] Quinlan, J. R., “Induction of Decision Trees”, Machine Learning, 1, pp. 81-106, 1986. [30] Quinlan, J. R., “Improved Use of Continuous Attributes in C4.5”, Journal of Artificial Intelligence Research, 4, pp. 77-90, 1996. [31] Rongtao, D., Xinhao, J., Linting, Z., Wei, R., “Study of the Learning Model based on Improved ID3 Algorithm”, Workshop on Knowledge Discovery and Data Mining, pp. 391-395, 2008. [32] Salzberg, S. L., “C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993”, Machine Learning, 16, pp. 235-240, 1994. [33] Sayyad Shirabad, J., Menzies, T. J., The PROMISE Repository of Software Engineering Databases. http://promise.site.uottawa.ca/SERepository [34] Sokolova, M., Japkowicz, N., Szpakowicz, S., “Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation”, Lecture Notes in Computer Science, 4304, pp. 1015-1021, 2006. [35] Shayeghi, H., Shayanfar, H. A., Jalilzadeh, S., Safari, A., “A PSO Based Unified Power Flow Controller for Damping of Power System Oscillations”, Energy Conversion and Management, 50, pp. 2583-2592, 2009. [36] Schneidewind, N. F., “Investigation of Logistic Regression as a Discriminant of Software Quality”, Software Metrics Symposium, pp. 328-337, 2001. [37] Selwyn, P., “Input Data for Decision Trees”, Expert Systems with Applications, 34, pp. 1220-1226, 2008. [38] Shi, Y., Eberhart, R. C., “A ModIfied Particle Swarm Optimization Algorithm”, Proceedings of IEEE International Conference on Evolutionary Computation, pp. 69-73,1998. [39] Taghi, M. K., Naeem, S., Angela, H., “Resource-Oriented Software Quality Classification Models”, Journal of Systems and Software, 76, pp. 111-126, 2005. [40] Wilson, A. M., Thabane, L., Holbrook, A.,“Application of Data Mining Techniques in Pharmacovigilance”, Journal of Clinical Pharmacology, 57, 2, pp. 127-134, 2003. [41] Witold, P., Giancarlo, S., “Genetic Granular Classifiers in Modeling Software Quality”, Journal of Systems and Software, 76, pp. 277-285, 2005. [42] Wu, X., Zhu, X., “Mining With Noise Knowledge:Error-Aware Data Mining”, IEEE Transactions on Systems, 38, pp. 917-932, 2008. [43] Wang, Z., Sun, X., Zhang, D., “A PSO-Based ClassIfication Rule Mining Algorithm”, Lecture Notes in Computer Science, 4682, pp. 377-384, 2007. [44] Wang, Z., Sun, X., Zhang, D., “ClassIfication Rule Mining Based on Particle Swarm Optimization”, Lecture Notes in Computer Science, 4062, pp. 436-441, 2006. [45] Yan, L., Zeng, J., “Using Particle Swarm Optimization and Genetic Programming to Evolve ClassIfication Rules”, Intelligent Control and Automation, pp. 3415-3419, 2006. [46] Yin, P. Y., Hwang, G. J., Chang, K. C., Hwang, G. H., Chan, Y., “A Particle Swarm Optimization Approach to Composing Serial Test Sheets for Multiple Assessment Criteria”, Educational Technology and Society, 9, pp. 3-15, 2006. [47] Zheng, J., “Predicting Software Reliability with Neural Network Ensembles”, Expert Systems with Applications, 36, pp. 2116-2122, 2009. [48] Zahiri, S. H., Seyedin, S. A., “Swarm Intelligence Based ClassIfiers”, Journal of the Franklin Institute, 344, pp. 362-376, 2007. [49] Zhao, X., Zeng, J., Gao, Y., Yang, Y., “A Particle Swarm Algorithm for ClassIfication Rules Generation”, Intelligent Systems Design and Applications, 2, pp. 957-962, 2006.
|