跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 16:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張年慶
研究生(外文):Nian-Cing Jhang
論文名稱:應用非線性樹於軟體品質評估
論文名稱(外文):Application of Nonlinear Trees for Software Quality Assessment
指導教授:邱南星
學位類別:碩士
校院名稱:清雲科技大學
系所名稱:資訊管理所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:53
中文關鍵詞:分&分&分&分&
外文關鍵詞:Data MiningSoftware QualityClassification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
基於軟體品質在軟體業界越來越被重視,許多應用資料探勘與人工智慧的軟體品質預測技術已被提出,但尋求ㄧ個適當方法來建構軟體品質預測模式依然是個艱鉅的任務。本研究提出非線性粒子群分類樹(CTPSO)來建構軟體品質預測模型,此方法使用粒子群演算法來搜尋非線性函數其參數,產生分類規則及分類樹之節點,進而建構出樹狀分類模型來改善決策樹隱含性分類問題。模式驗證使用RSER benchmark中的KC2資料集進行實驗並與C5.0、CART、CHAID、QUEST、ANN、LR、SVM及GP等方法作效能測試,經訓練及測試證明在KC2資料中,CTPSO所建立之預測模式有較高的預測能力。

Software quality in the software industry has gradually taken seriously. Therefore, many techniques From the data mining methods and artificial intelligence use to establish software quality classification models have been proposed. But finding a suitable method of establishing Prediction model is still a difficult task. The study is published in CTPSO to build software quality prediction model. This method uses the PSO to search for Non-linear function of Parameter. Using this approach produce Classification rules and Nodes. Further development of the Classification model to improve Decision Tree is hidden problem. This study used experimental data sets for the KC2. This method for comparison to C5.0, CART, CHAID, QUEST, ANN, LR, SVM and GP. The results showed that KC2 used CTPSO to produce better prediction results.

中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1研究背景 1
1.2研究動機 1
1.3研究目的 2
第二章 文獻探討 4
2.1軟體品質 4
2.1.1軟體品質定義 4
2.1.2軟體程序評估 4
2.1.3軟體模組評估 7
2.2資料探勘 11
2.2.1資料分類 11
2.2.2資料探勘之分類模式 12
2.3粒子群演算法 19
第三章 研究方法 22
3.1 CTPSO研究架構 23
3.2 CTPSO之研究流程 24
3.2.1 非線性函數設計 25
3.2.2 粒子群演算法之計算 25
3.2.3 粒子編碼設計 27
3.2.4 粒子群演算法之適應函數設計 28
3.2.5 CTPSO樹狀節點建構設計 29
3.2.6 CTPSO分類樹之規則呈現方式 29
3.3 CTPSO之分類流程 30
3.4 CTPSO與決策樹之比較 34
第四章 實驗說明及結果分析 35
4.1 資料集介紹 35
4.2 實驗設計 37
4.3 實驗結果與分析 40
第五章 結論 47
參考文獻 48
附 錄 52
簡 歷 54



[1] 李啟毓,「以混合評估函數及粒子群最佳化作影像分割」,國立中正大學,碩士論文,民國九十六年。
[2] 郭奕宏,「粒子群最佳化及其應用」,國立臺灣科技大學,碩士論文,民國九十七年。
[3] 蕭方智,「應用階層式粒子群方法於模糊決策樹之研究」,元智大學,碩士論文,民國九十四年。
[4] Azar, D., Harmanani, H., Korkmaz, R., “A Hybrid Heuristic Approach to Optimize Rule-Based Software Quality Estimation Models”, Information and Software Technology, 51, pp. 1365-1376, 2009.
[5] Azuma, M., “Software Products Evaluation System: Quality Models, Metrics and Processes–International Standards and Japanese Practice”, Information and Software
Technology, 38, pp. 145-154, 1996.
[6] Catal, C., Sevim, U., Diri, B., “Clustering and Metrics Thresholds Based Software Fault Prediction of Unlabeled Program Modules”, Sixth International Conference on Information Technology: New Generations, pp. 199-204, 2009.
[7] Catal, C., Diri, B., “A Systematic Review of Software Fault Prediction Studies”, Expert Systems with Applications, 36, pp. 7346-7354, 2009.
[8] Chen, L. W., Huang, S. J., “Accuracy And Efficiency Comparisons of Single- and Multi-Cycled Software”, Information and Software Technology, 51, pp. 173-181, 2009.
[9] Chen, M. S., Han, J., Yu, P. S., “Data Mining: an Overview Froma Database Perspective”, IEEE Transactions on Knowledge and DataEngineering, 8, pp. 866-883,
1996.
[10] Derniame, J. C., Kaba, B. A., Wastell, D., “Software Process: Principle, Methodology and Technology”, Lecture Notes in Computer Science, 1500, 1999.
[11] Deepa, P., Gopinath, V., Chandra, S. S., Veena, S.G., Achuthsankar, S., “A Hybrid Duration Model Using CART And HMM”, IEEE Region 10 Conference, pp. 19-21,
2008.
[12] Eberhart, R. C., Shi, Y., “Particle Swarm Optimization: Developments, Application and Resources”, Evolutionary Computation, 1, pp. 81-86, 2001.
[13] Freitas, A., “A Survey of Evolutionary Algorithms for Data Mining and Knowledge Discovery”, Advances Inevolutionary Computation, pp. 819-845, 2002.
[14] Fei, B., Liu, J., ”Binary Tree of SVM: A New Fast Multiclass Training and Classification Algorithm”, IEEE Transactions on Neural Networks, 17, pp. 696-704,
2006.
[15] Falco, I., Della Cioppa, A., Tarantino, E.,“Evaluation of Particle Swarm Optimization Effectiveness in Classification”, Lecture Notes in Computer Science, 3849, pp. 164-171,2006.
[16] Gondra, I., “Applying Machine Learning to Software Fault-Proneness Prediction”, Journal of Systems and Software, 81, pp. 186-195, 2008.
[17] Gustafson, S., Vanneschi, L., “Crossover-Based Tree Distance in Genetic Programming”, IEEE Transactions on Evolutionary Computation, 12, pp. 506-524, 2008.
[18] Garc, S., Herrera, F., ”Evolutionary Training Set Selection to Optimize C4.5 in Imbalanced Problems”, Hybrid Intelligent Systems, pp. 567-572, 2008.
[19] Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., Paulk, M., “Software Quality and The Capability Maturity Model”, Communication of the ACM, 40, pp. 30-40, 1997.
[20] Hu, X., Shi, Y., Eberhart, R. C., “Recent Advances in Particle Swarm”, Evolutionary Computation, 1, pp. 90-97, 2004.
[21] Jorgensen, M., “Software Quality Measurement”, Advances in Engineering Software, 30, pp. 907-912, 1999.
[22] Kennedy, J., Eberhart, R. C., “Particle Swarm Optimization”, Proceedings of the 1995 IEEE International Conference on Neural Networks, 4, pp. 1942-1948, 1995.
[23] Kass, G., “An Exploratory Technique for Investigating Large Quantities of Categorical
Data”, Applied Statistics, 29, pp. 119-127, 1980.
[24] Li, Z., Alaeddine, N., Tian, J., “Multi-Faceted Quality and Defect Measurement for Web Software and Source Contents”, Journal of Systems and Software, 83, pp. 18-28, 2010.
[25] Loh, W. Y., Shih, Y. S., “Split Selection Methods for Classification Trees”, Statistica Sinica, 7, pp. 815-840, 1997.
[26] Mill, J., Inoue, A., “Support Vector Classifiers and Network Intrusion Detection”, Proceedings of IEEE International Conference on Fuzzy Systems, 1, pp. 407-410, 2004.
[27] Phan, D. D., “Software Quality and Management: How The World’s Most Powerful Software Makers Do It”, Information System Management, pp. 1-12, 2001.
[28] Parziger, M. J., Nath, R., “A Study of Relationships Between Total Quality Management Implementation Factors and Software Quality”, Total Quality Management and Business Excellence, 11, pp. 353-371, 2000.
[29] Quinlan, J. R., “Induction of Decision Trees”, Machine Learning, 1, pp. 81-106, 1986.
[30] Quinlan, J. R., “Improved Use of Continuous Attributes in C4.5”, Journal of Artificial
Intelligence Research, 4, pp. 77-90, 1996.
[31] Rongtao, D., Xinhao, J., Linting, Z., Wei, R., “Study of the Learning Model based on Improved ID3 Algorithm”, Workshop on Knowledge Discovery and Data Mining, pp.
391-395, 2008.
[32] Salzberg, S. L., “C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993”, Machine Learning, 16, pp. 235-240, 1994.
[33] Sayyad Shirabad, J., Menzies, T. J., The PROMISE Repository of Software Engineering Databases. http://promise.site.uottawa.ca/SERepository
[34] Sokolova, M., Japkowicz, N., Szpakowicz, S., “Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation”, Lecture Notes in
Computer Science, 4304, pp. 1015-1021, 2006.
[35] Shayeghi, H., Shayanfar, H. A., Jalilzadeh, S., Safari, A., “A PSO Based Unified Power Flow Controller for Damping of Power System Oscillations”, Energy Conversion and Management, 50, pp. 2583-2592, 2009.
[36] Schneidewind, N. F., “Investigation of Logistic Regression as a Discriminant of Software Quality”, Software Metrics Symposium, pp. 328-337, 2001.
[37] Selwyn, P., “Input Data for Decision Trees”, Expert Systems with Applications, 34, pp.
1220-1226, 2008.
[38] Shi, Y., Eberhart, R. C., “A ModIfied Particle Swarm Optimization Algorithm”, Proceedings of IEEE International Conference on Evolutionary Computation, pp. 69-73,1998.
[39] Taghi, M. K., Naeem, S., Angela, H., “Resource-Oriented Software Quality Classification Models”, Journal of Systems and Software, 76, pp. 111-126, 2005.
[40] Wilson, A. M., Thabane, L., Holbrook, A.,“Application of Data Mining Techniques in Pharmacovigilance”, Journal of Clinical Pharmacology, 57, 2, pp. 127-134, 2003.
[41] Witold, P., Giancarlo, S., “Genetic Granular Classifiers in Modeling Software Quality”, Journal of Systems and Software, 76, pp. 277-285, 2005.
[42] Wu, X., Zhu, X., “Mining With Noise Knowledge:Error-Aware Data Mining”, IEEE Transactions on Systems, 38, pp. 917-932, 2008.
[43] Wang, Z., Sun, X., Zhang, D., “A PSO-Based ClassIfication Rule Mining Algorithm”,
Lecture Notes in Computer Science, 4682, pp. 377-384, 2007.
[44] Wang, Z., Sun, X., Zhang, D., “ClassIfication Rule Mining Based on Particle Swarm
Optimization”, Lecture Notes in Computer Science, 4062, pp. 436-441, 2006.
[45] Yan, L., Zeng, J., “Using Particle Swarm Optimization and Genetic Programming to
Evolve ClassIfication Rules”, Intelligent Control and Automation, pp. 3415-3419, 2006.
[46] Yin, P. Y., Hwang, G. J., Chang, K. C., Hwang, G. H., Chan, Y., “A Particle Swarm Optimization Approach to Composing Serial Test Sheets for Multiple Assessment
Criteria”, Educational Technology and Society, 9, pp. 3-15, 2006.
[47] Zheng, J., “Predicting Software Reliability with Neural Network Ensembles”, Expert Systems with Applications, 36, pp. 2116-2122, 2009.
[48] Zahiri, S. H., Seyedin, S. A., “Swarm Intelligence Based ClassIfiers”, Journal of the Franklin Institute, 344, pp. 362-376, 2007.
[49] Zhao, X., Zeng, J., Gao, Y., Yang, Y., “A Particle Swarm Algorithm for ClassIfication Rules Generation”, Intelligent Systems Design and Applications, 2, pp. 957-962, 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top