|
1.Lee, K.Y. and D.J. Mooney, Alginate: properties and biomedical applications. Progress in Polymer Science, 2012. 37(1): p. 106-126. 2.Ren, P.-W., et al., Monodisperse alginate microcapsules with oil core generated from a microfluidic device. Journal of colloid and interface science, 2010. 343(1): p. 392-395. 3.Ju, H.K., S.Y. Kim, and Y.M. Lee, pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer, 2001. 42(16): p. 6851-6857. 4.Gombotz, W.R. and S. Wee, Protein release from alginate matrices. Advanced Drug Delivery Reviews, 1998. 31(3): p. 267-285. 5.George, M. and T.E. Abraham, Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan — a review. Journal of Controlled Release, 2006. 114(1): p. 1-14. 6.Leick, S., et al., Deformation of liquid-filled calcium alginate capsules in a spinning drop apparatus. Physical Chemistry Chemical Physics, 2010. 12(12): p. 2950-2958. 7.Simpson, N.E., et al., The role of the CaCl2–guluronic acid interaction on alginate encapsulated βTC3 cells. Biomaterials, 2004. 25(13): p. 2603-2610. 8.Dubey, R., T.C. Shami, and K.U.B. Rao, Microencapsulation technology and applications. Defence Science Journal, 2009. 59(1). 9.Champagne, C.P. and P. Fustier, Microencapsulation for the improved delivery of bioactive compounds into foods. Current Opinion in Biotechnology, 2007. 18(2): p. 184-190. 10.P.Venkatesan, R.Manavalan, and K.Valliappan, Microencapsulation: a vital technique in novel drug delivery system. Journal of Pharmaceutical Sciences and Research, 2009. 1(4): p. 9. 11.Chen, C.-S., et al., Properties of astaxanthin/Ca2+ complex formation in the deceleration of Cis/Trans isomerization. Organic letters, 2007. 9(16): p. 2985-2988. 12.Ohgami, K., et al., Effects of astaxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Investigative Ophthalmology & Visual Science, 2003. 44(6): p. 2694-2701. 13.Lorenz, R.T. and G.R. Cysewski, commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 2000. 18(4): p. 160-167. 14.Synnove, L.-J., Basic Carotenoid Chemistry, in Carotenoids in Health and Disease2004, CRC Press. p. 1-30. 15.Higuera-Ciapara, I., L. Felix-Valenzuela, and F. Goycoolea, Astaxanthin: a review of its chemistry and applications. Critical Reviews in Food Science & Nutrition, 2006. 46(2): p. 185-196. 16.Atalay, Y.T., et al., Microfluidic analytical systems for food analysis. Trends in Food Science & Technology, 2011. 22(7): p. 386-404. 17.Sebastien, G., Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science & Technology, 2004. 15(7–8): p. 330-347. 18.Patel, R.P., M.P. Patel, and A.M. Suthar, Spray drying technology: an overview. Indian Journal of Science and Technology, 2009. 2(10): p. 4. 19.Gharsallaoui, A., et al., Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Research International, 2007. 40(9): p. 1107-1121. 20.Patel R. P., P.M.P., and Suthar A. M. , Spray drying technology: an overview. Indian Journal of Science and Technology, 2009. 2(10): p. 44. 21.Yuliani, S., et al., Application of microencapsulated flavor to extrusion product. Food Reviews International, 2004. 20(2): p. 163-185. 22.Desai, K.G.H. and H. Jin Park, Recent developments in microencapsulation of food Ingredients. Drying Technology, 2005. 23(7): p. 1361-1394. 23.Barbosa-Canovas, G.V., et al., Encapsulation processes food powders, 2005, Springer US. p. 199-219. 24.Teunou, E. and D. Poncelet, Batch and continuous fluid bed coating – review and state of the art. Journal of Food Engineering, 2002. 53(4): p. 325-340. 25.Karlsson, S., et al., Measurement of the particle movement in the fountain region of a Wurster type bed. Powder Technology, 2006. 165(1): p. 22-29. 26.KuShaari, K., et al., Monte Carlo simulations to determine coating uniformity in a Wurster fluidized bed coating process. Powder Technology, 2006. 166(2): p. 81-90. 27.Zuidam, N.J. and E. Heinrich, Encapsulation of aroma encapsulation technologies for active food ingredients and food processing, N.J. Zuidam and V. Nedovic, Editors. 2010, Springer New York. p. 127-160. 28.Wilson, N., Shah, and N. P., Microencapsulation of vitamins. ASEAN Food Journal, 2007. 14 (1): p. 14. 29.Augustin, M.A. and L. Sanguansri, Encapsulation of bioactives food materials science, J.M. Aguilera and P.J. Lillford, Editors. 2008, Springer New York. p. 577-601. 30.Risch Sara, J., Encapsulation: Overview of Uses and Techniques, in Encapsulation and Controlled Release of Food Ingredients1995, American Chemical Society. p. 2-7. 31.Dubey Rama, S.T.C.a.B.R.K.U., Microencapsulation technology and applications. Defence Science Journal, 2009. 59(1): p. 82. 32.Beindorff, C.M. and N.J. Zuidam, Microencapsulation of fish oil encapsulation technologies for active food ingredients and Food Processing, N.J. Zuidam and V. Nedovic, Editors. 2010, Springer New York. p. 161-185. 33.Quintanilla-Carvajal, M., et al., Nanoencapsulation: a new trend in food engineering processing. Food Engineering Reviews, 2010. 2(1): p. 39-50. 34.Meesters, G.M.H., Encapsulation of Enzymes and peptides encapsulation technologies for active food ingredients and food Processing, N.J. Zuidam and V. Nedovic, Editors. 2010, Springer New York. p. 253-268. 35.Ichiki, T., et al., Plasma applications for biochip technology. Thin Solid Films, 2003. 435(1–2): p. 62-68. 36.Xu, J., et al., Research and applications of biochip technologies. Chinese Science Bulletin, 2000. 45(2): p. 101-108. 37.Berkowski, K.L., et al., Introduction to photolithography: preparation of microscale polymer silhouettes. Journal of Chemical Education, 2005. 82(9): p. 1365. 38.Xia, Y. and G.M. Whitesides, Soft lithography. Angewandte Chemie International Edition, 1998. 37(5): p. 550-575. 39.Yang, C.-G., Z.-R. Xu, and J.-H. Wang, Manipulation of droplets in microfluidic systems. TrAC Trends in Analytical Chemistry, 2010. 29(2): p. 141-157. 40.Skurtys, O. and J. Aguilera, Applications of microfluidic devices in food engineering. Food Biophysics, 2008. 3(1): p. 1-15. 41.Liu, H. and Y. Zhang, Droplet formation in microfluidic cross-junctions. Physics of Fluids, 2011. 23(8): p. 082101. 42.Tan, Y.-C., V. Cristini, and A.P. Lee, Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sensors and Actuators B: Chemical, 2006. 114(1): p. 350-356. 43.Zhang, H., et al., Microfluidic production of biopolymer microcapsules with controlled morphology. Journal of the American Chemical Society, 2006. 128(37): p. 12205-12210. 44.Pan, X., et al., Sequential microfluidic droplet processing for rapid DNA extraction. Electrophoresis, 2011. 32(23): p. 3399-3405. 45.Mazutis, L., et al., Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Analytical chemistry, 2009. 81(12): p. 4813-4821. 46.Brouzes, E., et al., Droplet microfluidic technology for single-cell high-throughput screening. Proceedings of the National Academy of Sciences, 2009. 106(34): p. 14195-14200. 47.Konry, T., et al., Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosensors and Bioelectronics, 2011. 26(5): p. 2707-2710. 48.Koster, S., et al., Drop-based microfluidic devices for encapsulation of single cells. Lab on a chip, 2008. 8(7): p. 1110-1115. 49.Joensson, H.N., et al., Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angewandte Chemie, 2009. 121(14): p. 2556-2559. 50.Mazutis, L., et al., Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab on a chip, 2009. 9(20): p. 2902-2908. 51.Wu, N., et al., A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. Lab on a chip, 2009. 9(23): p. 3391-3398. 52.Li, L. and R.F. Ismagilov, Protein crystallization using microfluidic technologies based on valves, droplets, and slipchip. Annual Review of Biophysics, 2010. 39(1): p. 139-158. 53.Lombardi, D. and P.S. Dittrich, Droplet microfluidics with magnetic beads: a new tool to investigate drug-protein interactions. Analytical & Bioanalytical Chemistry, 2011. 399(1): p. 347-352. 54.Wang, F. and M. Burns, Performance of nanoliter-sized droplet-based microfluidic PCR. Biomed Microdevices, 2009. 11(5): p. 1071-1080. 55.Xuefei LengThese authors contributed equally to this, w., et al., Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR. Lab on a Chip - Miniaturisation for Chemistry & Biology, 2010. 10(22): p. 2841-2843. 56.Pekin, D., et al., Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab on a Chip, 2011. 11(13): p. 2156-2166. 57.Hill, J.W., Clean laboratory glassware. Journal of Chemical Education, 1983. 60(4): p. 304. 58.Joye, C.D., et al., Microfabrication of fine electron beam tunnels using UV-LIGA and embedded polymer monofilaments for vacuum electron devices. Journal of Micromechanics and Microengineering, 2012. 22(1): p. 015010. 59.Chen, W., R.H.W. Lam, and J. Fu, Photolithographic surface micromachining of polydimethylsiloxane (PDMS). Lab on a Chip, 2012. 12(2): p. 391-395. 60.Ng, J.M.K., et al., Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophresis, 2002. 23(20): p. 3461-3473. 61.Makamba, H., et al., Surface modification of poly(dimethylsiloxane) microchannels. Electrophresis, 2003. 24(21): p. 3607-3619. 62.Hjerten, S., High-performance Electrophoresis : elimination of electroendosmosis and solute adsorption. Journal of Chromatography A, 1985. 347(0): p. 191-198. 63.Mahkam, M. and L. Vakhshouri, Colon-specific drug delivery behavior of ph-responsive pmaa/perlite composite. International Journal of Molecular Sciences, 2010. 11(4): p. 1546-1556. 64.Hwang, C.M., et al., Benchtop fabrication of PDMS microstructures by an unconventional photolithographic method. Biofabrication, 2010. 2(4): p. 045001. 65.Rao, A.R., R. Sarada, and G.A. Ravishankar, Stabilization of astaxanthin in edible oils and its use as an antioxidant. Journal of the Science of Food and Agriculture, 2007. 87(6): p. 957-965. 66.Chae, S.-K., et al., Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase. Lab on a Chip, 2009. 9(13): p. 1957-1961. 67.Pu, J., J.D. Bankston, and S. Sathivel, Developing microencapsulated flaxseed oil containing shrimp (Litopenaeus setiferus) astaxanthin using a pilot scale spray dryer. Biosystems Engineering, 2011. 108(2): p. 121-132.
|