跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2025/09/01 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許智強
研究生(外文):Hsu, Chih-Chiang
論文名稱:含不確定性之殼管式熱交換器多目標最適設計
論文名稱(外文):Multiobjective Design of Shell-and-Tube Heat Exchanger under Uncertainty
指導教授:程學恆
指導教授(外文):Cheng, Shueh-Hen
學位類別:碩士
校院名稱:東海大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:160
中文關鍵詞:多目標規劃不確定性殼管式熱交換器強度Pareto演化式演算法菁英非劣排序遺傳演算法
外文關鍵詞:Multi-objective programmingUncertaintyShell-and-tube heat exchangerSPEA2NSGA2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
化工製程設計問題中常會遇到多個目標的最佳化問題,且多目標之間往往是互相衝突的情況,如在殼管式熱交換器的設計中,除了要求總年度成本少,也期望壓力降較低,並同時希望能夠減少清洗頻率。在另一方面,殼管式熱交換器的設計也普遍存在著不確定性因素,如流量、溫度、物性與熱傳係數等,以往亦常被忽略,以致於設計結果並非最佳化設計。有鑑於此,本研究乃探討含不確定性之殼管式熱交換器多目標最適設計,使用強度Pareto演化式演算法(SPEA2)與菁英非劣排序遺傳演算法(NSGA2)進行多目標最適化,並採用隨機規劃法,配合漢姆斯里序列抽樣法來處理不確定性參數。
本研究探討兩個案例,案例1為殼管式熱交換器之多目標最適設計,建構出殼管式熱交換器之設計步驟,並與傳統設計步驟作一比較,目標函數包括總年度成本、殼側/管側壓力降,與清洗頻率相關之熱傳面積增加比例,結果發現考慮多目標之後,可以提供多種殼管式熱交換器之設計選擇,而不僅只是考量最小總年度成本之設計。案例2為正丁烷異構化製程中之進料/反應流出物流熱交換器(FEHE)系統之多目標最適設計,在不確定性因素考量之下,運用旁路來達成製程物流所需之各別熱負荷。
Process design problems involving optimization of multiple objectives are often encountered in real world situations, and more often than not, these objectives are in conflict with each other. For instance, in the case of designing shell-and-tube heat exchangers, minimum total annual costs are usually desirable. In addition, low pressure drops and low cleaning frequency are also called for. On the other hand, uncertainty factors associated with the design such as flowrates, temperatures, and heat transfer coefficients may exist and are often neglected in the past, so that the design outcome may not reflect the true optimum design. In view of this, this study explores the design aspects of shell-and-tube heat exchangers from a multi-objective optimization perspective, while taking uncertainty into account. Stochastic programming methodology has been adopted in the work, in which the technique of Hammersley sequence is used to ensure uniform sampling in the uncertainty parameter space. Elitist non-dominated sorting-based genetic algorithm (NSGA2) and strength Pareto evolutionary algorithm (SPEA) have been successfully applied to solve the multiobjective optimization problem.
Two case studies have been investigated. Case 1 concerns with the multi-objective design of a shell-and-tube heat exchanger in a refinery process. Objective functions include total annual cost, shell-side/tube-side pressure drops, and cleaning frequency-based indicator called percentage increase of heat transfer area. The results yield a number of good alternative designs to choose from, not just a single design that takes only minimum cost into consideration. Case 2 discusses the multi-objective design of a feed/effluent heat exchanger (FEHE) system in an n-C4 isomerization process. In the presence of uncertainty factors, optimum designs which incorporate bypass flows to deliver individual heat loads needed are also presented.
摘要 III
Abstract IV
誌謝 V
目錄 VI
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 論文組織與架構 2
第二章 殼管式熱交換器 4
2.1 熱交換器簡介 4
2.2 殼管式熱交換器型式與構造 4
2.3 殼管式熱交換器設計理論 9
2.3.1 殼管式熱交換器基本熱傳理論 9
2.3.2 殼管式熱交換器設計方法 11
2.3.2.1 Bell-Delaware Method 12
第三章 多目標規劃與不確定性分析 24
3.1 多目標規劃 24
3.1.1 多目標規劃簡介 24
3.1.2 多目標規劃基本概念 24
3.1.3 多目標最佳化傳統解法 26
3.2 不確定性分析 28
3.2.1 不確定性簡介 28
3.2.2 不確定性最佳化理論 29
3.2.3 不確定性處理策略 31
第四章 遺傳演算法 35
4.1 遺傳演算法簡介 35
4.2 遺傳演算法特點 35
4.3 多目標遺傳演算法分類架構 37
4.4 第二代強度Pareto演化式演算法演算流程 39
4.5 第二代菁英非劣排序遺傳演算法演算流程 46
第五章 案例1 ― 殼管式熱交換器之多目標最適設計 52
5.1 案例介紹 52
5.2 殼管式熱交換器設計 54
5.2.1 一般設計步驟 54
5.2.2 本研究設計步驟 60
5.3 殼管式熱交換器多目標最適化 76
5.3.1 SPEA2與NSGA2參數設定 77
5.3.2 雙目標最適化 77
5.3.2.1 總年度成本與殼側壓力降最適化 78
5.3.2.2 總年度成本與管側壓力降最適化 82
5.3.2.3 總年度成本與熱傳面積增加比例最適化 86
5.3.2.4 殼側壓力降與熱傳面積增加比例最適化 90
5.3.2.5 管側壓力降與熱傳面積增加比例最適化 92
5.4 結果討論 94
第六章 案例2 ― 含不確定性之殼管式熱交換器多目標最適設計 97
6.1 案例介紹 97
6.2 含不確定性之殼管式熱交換器設計流程 99
6.2.1 系統分析 100
6.2.2 設計流程 103
6.3 含不確定性之殼管式熱交換器多目標最適化 107
6.3.1 SPEA2與NSGA2參數設定 107
6.3.2 雙目標最適化 107
6.3.2.1 含不確定性之總年度成本與殼側壓力降最適化 108
6.3.2.2 含不確定性之總年度成本與管側壓力降最適化 112
6.3.2.3 含不確定性之總年度成本與熱傳面積增加比例最適化 116
6.3.2.4 含不確定性之殼側壓力降與熱傳面積增加比例最適化 120
6.3.2.5 含不確定性之管側壓力降與熱傳面積增加比例最適化 122
6.4 結果討論 124
第七章 結論與未來展望 126
7.1 結論 126
7-2 未來展望 129
參考文獻 130
附錄A 材料之熱傳導係數與彈性模數 137
附錄B 伯明罕線規 139
附錄C 交錯流動區域的流速與臨界流速之估算 141
附錄D 建造成本之估算 148
附錄E 敏感度分析之結果 156
Agarwal, A., and S. K. Gupta, "Jumping Gene Adaptations of NSGA-II and their Use in the Multi-Objective Optimal Design of Shell and Tube Heat Exchangers," Chem. Eng. Res. Des., 2008, 86 (2), 123-139.
Al, A. S., and K. J. Bell, "Estimating Performance When Uncertainties Exist," Chem. Eng. Prog., 1981, 77 (7), 39-49.
Babu, B. V., and S. A. Munawar, "Differential Evolution Strategies for Optimal Design of Shell-and-Tube Heat Exchangers," Chem. Eng. Sci., 2007, 62 (14), 3720-3739.
Bell, K. J., "Final Report of the Cooperative Research Program on Shell-and-Tube Heat Exchangers," Bulletin No. 5, University of Delaware Engineering Experiment Station, Newark, DE, 1963.
Blevins, R. D., Flow-Induced Vibration, Van Nostrand Reinhold, New York, NY, 1990.
Caputo, A. C., P. M. Pelagagge, and P. Salini, "Heat Exchanger Design Based on Economic Optimisation," Appl. Therm. Eng., 2008, 28 (10), 1151-1159.
Carlson, E. C., "Don’t Gamble with Physical Properties for Simulations," Chem. Eng. Prog., 1996, 35-46.
Coello, C. A. C., G. T. Pulido, and E. M. Montes, "Current and Future Research Trends in Evolutionary Multiobjective Optimization," CINVESTAV-IPN, Col. San Pedro Zacatenco, Mexico, D. F., 2005.
Costa, A. L. H., and E. M. Queiroz, "Design Optimization of Shell-and-Tube Heat Exchangers," Appl. Therm. Eng., 2008, 28 (14-15), 1798-1805.
Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II," IEEE Trans. Evol. Comput., 2002, 6 (2), 182-197.
Diwekar, U. M., and E. S. Rubin, "Stochastic Modeling of Chemical Processes," Comput. Chem. Eng., 1991, 15 (2), 105-114.
Diwekar, U. M., and J. R. Kalagnanam, "Efficient Sampling Technique for Optimization under Uncertainty," AIChE J., 1997, 43 (2), 440-447.
Fesanghary, M., E. Damangir, and I. Soleimani, "Design Optimization of Shell and Tube Heat Exchangers Using Global Sensitivity Analysis and Harmony Search Algorithm," Appl. Therm. Eng., 2009, 29 (5-6), 1026-1031.
Fogler, H. S., Elements of Chemical Reaction Engineering, Pearson Education, Upper Saddle River, NJ, 2006.
Giunta, A. A., S. F. Wojtkiewicz, and M. S. Eldred, "Overview of Modern Design of Experiments Methods for Computational Simulations," AIAA, Reno, NV, 2003.
Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Boston, MA, 1989.
Hewitt, G. F., Heat Exchanger Design Handbook, Hemisphere, Washington, D. C., 1983.
KaKaç, S., and H. Liu, Heat Exchangers:Selection, Rating, and Thermal Design, CRC Press, Boca Raton, FL, 2002.
Kara, Y. A., and Ö. Güraras, "A Computer Program for Designing of Shell-and-Tube Heat Exchangers," Appl. Therm. Eng., 2004, 24 (13), 1797-1805.
Karian, Z. A., and E. J. Dudewicz, Modern Statistical, Systems, and GPSS Simulation, CRC Press, Boca Raton, FL, 1998.
Kern, D. Q., Process Heat Transfer, McGraw-Hill, New York, NY, 1950.
Kukkonen, S., and K. Deb, "Improved Pruning of Non-Dominated Solutions Based on Crowding Distance for Bi-Objective Optimization Problems," IEEE Congr. Evol. Comput., 2006, 1179-1186.
Liu, B., Theory and Practice of Uncertain Programming, Physica-Verlag, Heidelberg, 2002.
Luyben, W. L., B. D. Tyréus, and M. L. Luyben, Plantwide Process Control, McGraw-Hill, New York, NY, 1999.
Özçelik, Y., "Exergetic Optimization of Shell and Tube Heat Exchangers Using a Genetic Based Algorithm," Appl. Therm. Eng., 2007, 27 (11-12), 1849-1856.
Palen, J. W., and J. Taborek, "Solution of Shell-Side Flow Pressure Drop and Heat Transfer by Stream Analysis Method," Chem. Eng. Prog. Symp. Ser. No. 92, 1969, 65, 53-63.
Perry, R. H., D. W. Green, and J. O. Maloney, Perry’s Chemical Engineers’ Handbook, McGraw-Hill, New York, NY, 1997.
Peters, M. S., K. D. Timmerhaus, and R. E. West, Plant Design and Economics for Chemical Engineers, McGraw-Hill, New York, NY, 2003.
Pistikopoulos, E. N., and M. G. Ierapetritou, "Novel Approach for Optimal Process Design under Uncertainty," Comput. Chem. Eng., 1995, 19 (10), 1089-1110.
Ponce, J. M., M. Serna, and A. Jiménez, "Use of Genetic Algorithms for the Optimal Design of Shell-and-Tube Heat Exchangers," Appl. Therm. Eng., 2009, 29 (2-3), 203-209.
Purohit, G. P., "Estimating Costs of Shell-and-Tube Heat Exchangers," Chem. Eng., 1983, 90 (17), 56-67.
Raghuwanshi, M. M., and O. G. Kakde, "Survey on Multiobjective Evolutionary and Real Coded Genetic Algorithms," Proc. of the 8th Asia Pacific Symposium on Intelligent and Evolutionary Systems, 2004, 150-161.
Rao, K. R., U. Shrinivasa, and J. Srinivasan, "Synthesis of Cost-Optimal Shell-and-Tube Heat Exchangers," Heat Transf. Eng., 1991, 12 (3), 47-55.
Ravagnani, M. A. S. S., and J. A. Caballero, "A MINLP Model for the Rigorous Design of Shell and Tube Heat Exchangers Using the TEMA Standards," Chem. Eng. Res. Des., 2007, 85 (10), 1423-1435.
Rooney, W. C., and L. T. Biegler, "Design for Model Parameter Uncertainty Using Nonlinear Confidence Regions," AIChE J., 2001, 47 (8), 1794-1804.
Selbaş, R., Ö. Kızılkan, and M. Reppich, "A New Design Approach for Shell-and-Tube Heat Exchangers Using Genetic Algorithms from Economic Point of View," Chem. Eng. Process., 2006, 45 (4), 268-275.
Serna, M., and A. Jiménez, "An Efficient Method for the Design of Shell and Tube Heat Exchangers," Heat Transf. Eng., 2004, 25 (2), 5-16.
Serna, M., and A. Jiménez, "A Compact Formulation of the Bell-Delaware Method for Heat Exchanger Design and Optimization," Chem. Eng. Res. Des., 2005, 83 (5), 539-550.
Serth, R. W., Process Heat Transfer:Principles and Applications, Elsevier Academic Press, Burlington, MA, 2007.
Shah, R. K., and D. P. Sekulić, Fundamentals of Heat Exchanger Design, John Wiley & Sons, Hoboken, NJ, 2003.
Sinnott, R. K., Chemical Engineering Design, Elsevier Butterworth-Heinemann, Burlington, MA, 2005.
Smith, R., Chemical Process Design and Integration, John Wiley & Sons, West Sussex, England, 2005.
Standards of the Tubular Exchanger Manufacturers Association, TEMA, Tarrytown, NY, 2007.
Tinker, T., "Shell-Side Characteristics of Shell-and-Tube Heat Exchangers," Proc. General Discussion on Heat Transfer, Inst. Mech. Eng., London, England, 1951, 97-116.
Uddin, A. K. M. M., and K. J. Bell, "Effect of Uncertainties on the Performance of a Feed-Effluent Heat Exchanger System," Heat Transf. Eng., 1988, 9 (4), 63-72.
Varvarezos, D. K., I. E. Grossmann, and L. T. Biegler, "An Outer-Approximation Method for Multiperiod Design Optimization," Ind. Eng. Chem. Res., 1992, 31 (6), 1466-1477.
Wildi, P., and L. Gosselin, "Minimizing Shell-and-Tube Heat Exchanger Cost with Genetic Algorithms and Considering Maintenance," Int. J. Energy Res., 2007, 31 (9), 867-885.
Zitzler, E., M. Laumanns, and L. Thiele, "SPEA2:Improving the Strength Pareto Evolutionary Algorithm," TIK, Zurich, ZH, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top