跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 12:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯皇卲
研究生(外文):Huang-Shao Ko
論文名稱:含有內建微壓力及溫度感測器之微流體系統製程開發及應用於微管道之熱流特性研究
論文名稱(外文):Fabrication and Development of Micro Fluidic System with Embedded Micro Pressure and Temperature Sensors for Study of Thermal and Fluid Flow Properties
指導教授:高騏高騏引用關係
指導教授(外文):Chie Gau
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:193
中文關鍵詞:壓力感測器微流管道微流體系統
外文關鍵詞:Micro Fluidic SystemMicro-ChannelPressure Sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:117
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要探討如何沿著微管道內部設置微感測器之設計與製作,目的是以IC製程技術為基礎,利用低熱傳導係數之材料於低溫製程中發展微流管道系統,使其可使用氣體或液體為工作流體於不同雷諾數條件下量測管道內之壓力分佈與熱傳係數。於論文中主要之研究項目為:(1)結合體型與面型加工之優點設計出壓力感測器,(2)利用模擬軟體、理論計算與實驗數據進行壓力薄膜之設計,(3)結合標準IC製程與微機電技術製作微管道系統,(4)進行感測器之特性測試,(5)量測微管道內之壓力降與熱傳係數。

由目前文獻可知微觀流體現象無法精確地量測,因其往往僅止於量測微管道之進出口壓力以獲得壓力降以及利用表面設置熱電偶來獲得溫度分佈數據。在本研究中,成功地結合標準半導體製程與微機電技術,將微壓力、溫度感測器以及加熱器整合於微管道內部,並設計出新型之壓力感測器結構使之容易整合於管道之中,而壓力薄膜之厚度、壓力腔體以及微管道之高度皆可利用旋轉塗佈的方式將所需之厚度由數微米至數百微米不等進行控制,此製程方法之優勢在於可將壓力腔體之高度增加以增加壓力量測範圍。此外,所製作之新型壓力感測器亦進行多項測試,證明其具有良好之回復性、穩定度、可靠度及熱穩定性,並將其與微管道進行系統之整合,以做為內部流動現象之量測。

本研究中氣體與液體之實驗均建構在連續流體於層流區之條件,首先於空氣之壓力分佈實驗中發現,當氣體之馬赫數大於0.3之後,於管道內部之壓力分佈則呈現非線性,其主要原因來自於氣體之可壓縮性。而利用水以及電解液做為工作流體進行壓力分佈量測之實驗中則發現壓力降略高與理論值,推測此現象來自於電雙層之影響,而電雙層的發生,與管道材料、管道尺寸與工作流體特性息息相關。最後利用空氣進行熱傳實驗,其結果顯示紐塞爾數於完全發展流區域中不同於理論值之原因來自於空氣之可壓縮性與管道之深寬比所影響。
The objective of present work is to design and fabricate a complicated micro-channel system integrated with arrays of sensors for measurement of thermal and flow transport process. Fabrication techniques based on standard IC process are developed for the sensors system and the micro-channel is made by a low temperature fabrication process which adopts low thermal conductivity materials. This channel can allow either gas or liquid flow through for measurements of local pressure distribution and heat transfer coefficient inside the channel at different Reynolds number flow conditions. The issues studied are: (1) Design of pressure sensor arrays combined with advantages of both bulk and surface micromachining, (2) Design of pressure diaphragm by the numerical prediction from ANSYS software, the analytical solution and the experimental data, (3) Fabrication of channel system by combined standard IC process and MEMS technology, (4) characteristic measurements of sensors, (5) Measurements of the pressure drop and heat transfer process in the heated micro-channel.

From literature report, much of the information reported in the past could not provide understanding of flow and heat transfer in micro-channel, since most of the experimental data are obtained only by the pressure and temperature measurements at the inlet and outlet of the channel. In this research, the micro-channel system, integrated with arrays of pressure, temperature sensors and heater, has been successfully fabricated by combining the standard IC process and MEMS technology. A novel structure of pressure sensor arrays, integrated along the micro-channel, has been designed with the advantages of both bulk and surface micromachining. The thickness of the diaphragm and the height of the cavity can be readily varied from few to hundreds of microns by spin coating of SU-8 layer. This allows fabrication of pressure sensor with much wider range of measurement. The sensor performance has been evaluated, which shows a good recovery, high reliability, low thermal effect and well stability. The sensors can be widely applied in micro-fluidic system where pressure or temperature information is required.

Both gas and liquid flows were studied in the continuous and laminar flow region. The pressure distribution of air flow found in the micro-channel is not linear, due to the compressibility effect, except when the Mach number of the flow speed in the channel is lower than 0.3 and the flow can be assumed as incompressible. The pressure distributions using either DI water or electrolyte solutions as working fluid are also measured. The results indicate that the thickness of EDL effect on the flow behavior in either the DI water or the electrolyte solutions in micro-channel depends on channel material, sizes and liquid properties. Finally, heat transfer experiments with air flow have also been performed in the micro-channel. Some deviation of Nusselt numbers from the prediction based on large scale channel flow is found and is attributed to the gas compressibility effect and the finite aspect ratio of the micro-channel which is of 1:13.
ABSTRACT IN CHINESE…………………………………………………………… I
ABSTRACT……………………………………………………………………… XIV
CONTENTS……………………………………………………………………… XVI
LIST OF TABLES……………………………………………………………… XVIII
LIST OF FIGURES……………………………………………………………… XIX
NOMENCLATURE…………………………………………………………… XXIV
CHAPTER
I INTRODUCTION……………………………………………………………………1
1.1 Micro-Electro-Mechanical Systems……………………………………………… 1
1.2 Objectives…………………………………………………………………………2
1.3 Review the Researches of Micro-Channels……………………………………… 3
1.3.1 Introduction of Channel Flow………………………………………………… 3
1.3.2 Gas Flow in Micro-Channel…………………………………………………… 5
1.3.3 Liquid Flow in Micro-Channel………………………………………………… 8
1.4 Review of Pressure Sensor Technology………………………………………… 10

II DESIGN AND FABRICATION CONSIDERATIONS OF MICROCHANNEL……14
2.1 Pressure Sensor of Poly-Silicon Diaphragm…………………………………… 15
2.1.1 Problem in the Pressure Sensor of Poly-Silicon Diaphragm…………………… 19
2.2 Pressure Sensor of Polymer (SU-8) Diaphragm………………………………… 22
2.3 Design of Polymer (SU-8) Diaphragm………………………………………… 25
2.3.1 Theoretical Modeling for Polymer Diaphragm…………………………………26
2.3.2 ANSYS simulation for Polymer Diaphragm……………………………………29
2.3.3 Experiments of Diaphragm Deformation………………………………………29
2.4 Design of Micro-channel System……………………………………………… 32
III DISCUSSION ON FABRICATION TECHNIQUE……………………………… 34
3.1 Standard IC Process…………………………………………………………… 36
3.1.1 Wafer Clean and Thin Film Deposition……………………………………… 36
3.1.2 Photolithography and Etching……………………………………………… 38
3.1.3 Ion Implantation, Annealing and Metallization……………………………… 40
3.2 MEMS Fabrication Process……………………………………………………42
3.2.1 Wafer Polishing………………………………………………………………42
3.2.2 Photolithography of SU-8 Diaphragm and Cavity……………………………43
3.2.3 Wafer Bonding Process………………………………………………………47
3.2.3.1 Flexible PET Bonding Process………………………………………………49
3.2.3.2 Epoxy Resin Bonding Process………………………………………………52
3.2.4 Removal of Silicon Substrate…………………………………………………54
3.2.5 Wafer Cutting and SU-8 Micro-Channel Lithography…………………………57
3.3 Fabrication Process with Array of Sensors and Heater…………………………59
IV EXPERIMENTAL SET-UP AND PREPARATION……………………………… 61
4.1 Experimental Apparatus…………………………………………………………61
4.1.1 Gas Flow Supply System………………………………………………………61
4.1.2 Liquid Flow Supply System……………………………………………………62
4.2 Characteristics of Sensors and Heater……………………………………………62
4.2.1 Characteristics of Temperature Sensors and Heater……………………………63
4.2.2 Characteristics of Pressure Sensors…………………………………………… 64
4.3 Experimental Procedures……………………………………………………… 67
4.3.1 Procedures of Pressure Drop Experiment…………………………………… 67
4.3.2 Procedures of Heat Transfer Experiment………………………………………68
V PRESSURE DROP AND HEAT TRANSFER IN THE MICRO-CHANNEL………69
5.1 Analysis of Pressure Drop for Air Flow…………………………………………69
5.1.1 Experimental Results of Pressure Drop for Air Flow………………………… 71
5.2 Analysis of Pressure Drop for Liquid Flow………………………………………74
5.2.1 Experimental Results of Pressure Drop for Liquid Flow……………………… 76
5.3 Analysis of Heat Transfer for Air Flow………………………………………… 79
5.3.1 Experimental Results of Heat Transfer for Air Flow………………………… 80
5.4 Uncertainty of the Experiment………………………………………………… 85
VI CONCLUSIONS AND FUTURE RECOMMENDATION…………………………………………………………… 87
6.1 Conclusions…………………………………………………………………… 87
6.2 Recommendations for Future Work…………………………………………… 89
REFERENCES……………………………………………………………………… 91
TABLES……………………………………………………………………………103
FIGURES………………………………………………………………………… 110
VITA………………………………………………………………………………189
PUBLICATION LIST………………………………………………………………190
Acosta, R.E., Muller, R.H., and Tobias, W.C., 1985, “Transport processes in narrow (Capillary) channels,” AIChE Journal, Vol.31, pp.473–482.
Arshak, K., Morris, D., Arshak, A., Korostysnska, O., Jafer, E., Waldron, D., and Harris, J., 2006, “Development of polymer-based sensors for integration into a wireless data aquisition system suitable for monitoring environmental and physiological processes,” Biomolecular Engineering, Vol. 23, pp. 253 - 257.
Bean, K. E., 1978, “Anisotropic etching of silicon,” IEEE Transactions on Electron Devices ED-25, pp. 1185–1193.
Bassous, E, 1978, “Fabrications of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon,” IEEE Transactions on Electron Devices, ED-25, pp. 1178–1185.
Boresi, A. P. et al, 1993, “Advanced Mechanics of Materials,” Wiley, New York, pp. 538-539.
Bao, M., Burrer, C., Esteve, J., Bausells, J. and Marco, S., 1993, “Etching front control (100) strips for corner compensation,” Sensors and Actuators A, Vol. 37-38, 727–732.
Baviere, R. and Ayela, F., 2004, “Micromachined strain gauges for the determination of liquid flow friction coefficients in microchannels,” Measurement Science and Technology, Vol. 15, pp. 377-383.
Blanco, F. J., Agirregabiria, M., Garcia, J., Berganzo, J., Tijero, M., Arroyo, M. T., Ruano, J. M., Aramburu, I. and Mayora, K., 2004, “Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding,” Journal of Micromechcal and Microengineering, Vol. 14, pp. 1047-1056.
Bilenberg, B., Nielsen, T., Clausen, B. and Kristensen, A., 2004, ” PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics,” Journal of Micromechcal and Microengineering, Vol. 14, pp.814-818.
Bayraktar, T. and Pidugu, S. B., 2006, “Review: Characterization of liquid flows in microfluidic systems,” International Journal of Heat Mass Transfer, Vol. 49, pp. 815-824.
Clark, S. K. and Wise, K. D., 1979, “Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors,” IEEE Transactions on Electron Devices, Vol. ED-26, pp.1887-1896.
Choi, S. B., Barron, R. F., and Warrington, R. O., 1991, “Fluid Flow and Heat Transfer in Microtubes,” ASME DSC, Vol. 32, pp.123-134.
Core, T. A., Tsang, W. K. and Sherman, S. J., 1993, “Fabrication Technology for an Integrated Surface Micromachined Sensor,” Solid State Technology, October, pp.39-47.
Davidenkov, N. N., 1961, “Measurement of Residual Stresses in Electrolytic Deposits Soviet Physics,” Solid State English Translation, Vol. 2, pp. 2595 - 2598.
Dellmann, L., Roth, S., Beuret, C., Racine, G. A., Lorenz, H., Despont, M., Renaud, P. and Vettiger, P., 1997, “Fabrication process of high aspect ratio elastic structures for piezoelectric motor applications,” Transducers 97
French, P. J. and Evans, A. G. R., 1984, “Piezoresistance in Polysilicon,” Electronics Letters, Vol. 20, No. 24, pp.999-1000.
Ghandi, S. K., 1983, “VLSI Fabrication principles: Silicon and gallium arsenide,” 2th Ed. New York : John Wiley & Sons.
Guckel, H. and Burns, D. W., 1986, “Fabrication techniques for integrated sensor microstructures,” Tech. Digest IEEE International Electron Devices Meeting (IEDM ’86), pp. 122–125.
Guckel, H., 1991, “Surface micromachined pressure transducer,” Sensors and Actuators A, Vol. 28, pp. 133-146.
Gau, C., Yih, K. A. and Aung, W., 1992, Measurements of heat transfer and flow structure in heated vertical channels,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 6, pp. 707-712.
Gau, C., Huang, T. M. and Aung, W., 1996, “Flow and mixed convection heat transfer in a divergent heated vertical channel,” ASME Journal of Heat Transfer, Vol. 118, pp. 606-615.
Guo, Z. and Li, Z., 2003, “Size effect on microscale single-phase flow and heat transfer,” International Journal of Heat Mass Transfer, Vol. 46, pp. 149–59.
Giordani, N., Camberlein, L., Gaviot, E., Polet, F., Pelletier, and N., Bêche, B., 2007, “Fast psychrometers as new SU-8 based Microsystems,” IEEE Transactions on Instrumentation and Measurement, Vol. 56(1), pp. 102-106.
Harley, J. C., Huang, Y. H., Bau, H., and Zemel, J. N., 1995, “Gas flow in micro channels,” Journal of Fluid Mechanics, Vol. 284, pp257-274.
Huang, T. M., Gau, C. and Aung, W., 1995, “Mixed convection flow and heat transfer in a heated vertical convergent channel,” International Journal of Heat and Mass Transfer, Vol. 38, pp. 2445-56.
Harms, T.M., Kazmierczak, M.J., Gerner, F.M., Holke, A., Henderson, H.T., Pilchowski, J., and Baker, K., 1997, ”Experimental investigation of heat transfer and pressure drop through deep microchannels in a (110) silicon substrate,” Proceedings of ASME Heat Transfer Division, ASME HTD, Vol. 351-1, pp. 347–357.
Harms, T. M., Kazmierczak, M. J., and Gerner, F. M., 1999, ”Developing convective heat transfer in deep rectangular microchannels,” International Journal of Heat Fluid Flow, Vol. 20, pp. 149–157.
Hartzell, A. H. and Woodilla, D., 1999, “Reliability methodology for prediction of micromachined accelerometer stiction,” 37th International Reliability Physics Symposium (IRPS), San Diego, California, pp. 202-207.
Incropera, F. P., DeWitt, D. P., Bergman, T. L. and Lavine, A. S., 2007, “Fundamentals of Heat and Mass Transfer,” 6th Ed., New York, John Wiley &Sons Inc., Chap 8.
Jiang, X. N., Zhou, Z. Y., Yao, J., Li, Y., and Ye, X.Y., 1995, “Micro-fluid flow in microchannel,” Proceedings of Transducers ’95, Stockolm, Sweden, pp. 317–320.
Jiang, P. X., Fan, M. H., Si, G. S., and Ren, Z. P., 1997, “Thermal-hydraulic performance of small scale micro-channel and porous-media heat exchangers,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 1039–1051.
Judy, J., Maynes, D., and Webb, B. W., 2000, “Liquid flow pressure drop in microtubes,” Proceedings of the Micro-Scale Heat Transfer Conference, Alberta, Canada, pp. 149-154.
Jackman, R. J., Floyd, T. M., Ghodssi, R., Schmidt, M. A., and Jensen, K. F., 2001, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” Journal of Micromechcal and Microengineering., Vol. 11, pp.263-269.
Kline, S. J. and McClintock, F. A., 1953, “Describing uncertainties in single-sample experiments,” Mechanical Engineering, Vol. 75, pp. 3-12.
Kendall, D. L., 1975, “On etching very narrow grooves in silicon,” Applied Physics Letters, Vol.26, pp. 195–201.
Kanda, Y., 1982, “A graphical representation of the piezoresistive coefficients in silicon,” IEEE Transactions on electron devices ED-29, Vol. 1, pp. 64-70.
Komvopoulos, K., 1996, “Surface engineering and microtribology for microelectromechanical systems,” Wear, Vol. 200, Issue 1-2, Dec., pp.305-327.
Kim, C. J., Kim, J. Y. and Sridharan, B., 1998, “Comparative evaluation of drying techniques for surface micromachining,” Sensors and Actuators A, Vol. 64, pp.17-26.
Ko, H. S., Wei, C. H., Huang, J. Z., 2003, “Fabrication and Simulation of a Multi-Axis Capacitive Micro Accelerometer,” Master thesis, Southern Taiwan University of Technology, Tainan, Taiwan, ROC.
Kleinstreuer, C. and Koo, J., 2004, “Computational Analysis of Wall Roughness Effects for Liquid Flow in Micro-Conduits,”Journal of Fluid Engineering, Vol. 126, pp. 1-9.
Kohl, M. J., Abdel-Khalik, S. I., Jeter, S. M. and Sadowski, D. L., 2005, “An experimental investigation of microchannel flow with internal pressure measurements,” International Journal of Heat Mass Transfer, Vol. 48, pp. 1518-1533.
Kays, W. M., Crawford, M. E. and Weigand, B., 2005, “Convective Heat and Mass Transfer,” 4th Ed. New York : McGraw-Hill, Chap 8
Legtenberg, R., Elders, J., Elwenspoek, M., 1993, “Stiction of surface microstructure after rinsing and drying: model and investigation of adhesion mechanisms,” Proc. 7th International Conference of Solid-State Sensors and Actuators (Transducer’93), Yogohama, Japan, pp.198-201.
Liu, J., and Tai, Y., 1995, “MEMS for pressure distribution studies of gaseous flows in microchannels,” An Investigation of Micro Structures, Sensors, Actuators, Machines, and Systems, pp. 209-215.
Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P. and Vettiger, P., 1997, “A low-cost negative resist for MEMS,” J. Micromech. Microeng., Vol. 7, pp. 121–124.
Li, X., Lee, W. Y., Wong, M. and Zohar, Y., 2000, “Gas flow in constriction microdevices,” Sensor and Actrators A, Vol. 83, pp. 277-283.
Li, Z. X., Du, D. X., and Guo Z.Y., 2000, “Characteristics of frictional resistance for gas flow in microtubes,” Proceedings of Symposium on Energy Engineering in the 21st Century, Vol. 2, pp. 658–664.
Li, Z. X., Du, D. X., and Guo, Z. Y., 2000, “Experimental study on flow characteristics of liquid in circular microtubes,” Proceedings of International Conference on Heat Transfer and Transport Phenomena in Microscale, Begell House, New York, USA, pp. 162–168.
Lalonde, P., Colin, S., and Caen, R., 2001, “Mesure de debit de gaz dans les microsystemes, Mechanical Industry, Vol. 2, pp. 355–362.
Li, D., 2001, “Electro-viscous effects on pressure-driven liquid flow in microchannels,” Colloids and Surface A, Vol. 195, pp. 35-57.
Lee, W. Y., Wong, M, and Zohar, Y., 2002, “Pressure Loss in Constriction Microchannels,” Journal of MicroElectroMechanicalSystem, Vol. 11, No. 3, pp. 236-244.
Li, Z. X., Du, D. X., and Guo, Z. Y., 2003, “Experimental study on flow characteristics of liquid in circular microtubes,” Microscale Thermophysicals Engineering, Vol. 7, pp. 253–265.
Li, S., Freidhoff, C. B., Young, R. M. and Ghodssi, R., 2003, “Fabrication of micronozzles using low-temperature wafer-level bounding with SU-8,” Journal of Micromechcal and Microengineering, Vol. 13, pp.732-738.
Lee, G. B., Lin, C. H., and Chang, G. L., 2003, “Micro flow cytometers with buried SU-8/SOG optical waveguides,” Sensors and Actuators A, Vol. 103, pp. 165-170.
Liu, C. W., 2004, “Fabrication Development for Micro Channel System by MEMS Technology with Measurements of the Inside Thermal Transport Process,” PhD thesis, National Cheng Kung University, Tainan, Taiwan, ROC.
Liu, C. W., Gau, C. and Dai, B. T., 2004, “Design and fabrication development of a micro flow heated channel with measurements of the inside micro-scale flow and heat transfer process,” Biosensors and Bioelectronics, Vol. 20(1), pp. 91-101.
Luca, M. G., 2004, “Single-phase convective heat transfer in microchannels: a review of experimental results,” International Journal of Thermal Science, vol. 43, pp. 631-651.
Mason, W. P., 1969, “Use of solid-state transducers in mechanics and acoustics,” Journal of the Audio Engineering Society, Vol. 17, pp. 506-511.
Mala, G. M. and Li, D., 1997, “Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects,” International Journal of Heat and Fluid Flow, Vol. 18, pp. 489-496.
Martin, Bacher, W., Hagena, O. F., and Schomburg, W. K., 1998, “Strain Gauge Pressure and Volume-Flow Transducers Made by Thermoplastic Molding and Membrane Transfer,” Proceedings of MEMS ’98, Jan. 25th - 29th in Heidelberg, Germany, pp. 361 - 366.
Mala, G. M. and Li, D., 1999, “Flow characteristics of water in microtubes,” International Journal of Heat and Fluid Flow, Vol. 20, pp. 142-148.
Madou, M. J., 2002, “Fundamentals of Microfabrication,” 2nd ed., CRC Press, pp.276-277.
Merlijn, W. and Leuven, K. U., 2003, “The prediction of stiction failures in MEMS,” IEEE Transactions on Device and Materials Reliability, Vol. 3(4), pp. 167-174.
Naito, E., 1984, “Laminar Heat Transfer in the Entrance Region between Parallel Plates - The Case of Uniform Heat Flux,” Heat transfer, Japanese research, vol. 13(3), pp. 92-106.
Offereins, H. L., and Sandmaier, H., 1991, “Methods for the fabrication of convex corners in anisotropic etching of (100) silicon in aqueous KOH,” Sensors Actuators A, Vol. 25–27, pp. 9–13.
Obermeier, E. and Kopystynski, P., 1992, “Polysilicon as a material for microsensor applications,” Sensors and Actuators A, Vol. 30, pp. 149-155.
Peake, E. R., Zias, A.R. , and Egan, J. V., 1969, “Solid-state digital pressure transducer,” IEEE Transactions on Electron Devices, Vol. 16, pp.870-876.
Pfahler, J., Harley, J., Bau, H. H., and Zemel, J., 1990, “Liquid and Gas Transport in Small Channels,” ASME DSC, Vol. 19, pp. 149-157.
Puers, B. and Sansen, W., 1990, “Compensation structures for convex corner micromachining in silicon,” Sensors and Actuators A, Vol. 21–23, pp. 1036–1041.
Pfahler, J., Harley, J., Bau, H. H., and Zemel, 1991, “Gas and Liquid Flow in Small Channels,” ASME DSC, Vol. 32, pp. 49-60.
Pong, K. C., Ho, C. M., Liu, J., and Tai, Y. C., 1994, “Nonlinear Pressure Distribution in Uniform Microchannel,” Application of Microfabrication to Fluid Mechanics, ASME FED, Vol. 197, pp. 51-56.
Peng, X. F., Peterson, G. P. and Wang, B. X., 1994, “Frictional flow characteristics of water flowing through rectangular microchannels,” Experiment Heat Transfer, Vol. 7, pp. 249–264.
Peng, X. F. and Peterson, G. P., 1996, “Convective heat transfer and flow friction for water flow in microchannel structures,” International Journal of Heat Mass Transfer, Vol. 39, pp. 2599–2608.
Pfund, D. A., Shekarriz, A., Popescu, A., and Welty J. R., 1998, “Pressure drops measurements in microchannels,” Proceedings of MEMS, ASME DSC, Vol. 66, pp. 193–198.
Pan, C. T., Yang, H., Shen, S. C., Chou, M. C., and Chou, H. P., 2002, “A low-temperature wafer bonding technique using patternable materials,” Journal of Micromechcal and Microengineering, Vol. 12, pp.611-615.
Pelletier, N., Bêche, B., Tahani, N., Zyss, J., Camberlein, and L., Gaviot, E., 2007, “SU-8 waveguiding interferometric micro-sensor for gage pressure measurement,” Sensors and Actuators A, Vol. 135, pp. 179-184.
Qu, W., and Mala, M., and Li, D., 2000, ”Pressure-driven water flows in trapezoidal silicon microchannels,” International Journal of Heat and Mass Transfer, Vol. 43 , pp. 353– 364.
Qu, W., and Mudawar, I., 2002, “Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 2549–2565.
Rohsenow, W. M., Hartnett, J. P. and Ganic, E. N., 1985, “Handbook of Heat Transfer Fundamentals,” 2nd Ed. New York : McGraw-Hill, pp. 7-49.
Ren, L., Qu, W., and Li, D., 2001, “Interfacial electrokinetic effects on liquid flow in microchannels,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 3125–3134.
Ren, L., Li, D., and Qu, W., 2001, “Electro-Viscous Effects on Liquid Flow in Microchannels,” Journal of Colloid and Interface Science, Vol. 233, pp. 12-22.
Ribeiro, J. C., Minas, G., Turmezei, P., Wolffenbuttel, R. F., and Correia, J. H., 2005, “A SU-8 fluidic microsystem for biological fluids analysis,” Sensors and Actuators A, Vol. 123-124, pp. 77-81.
Stoney, G. G., 1909, “The Tension of Metallic Films deposited by Elecrolysis,” Proceedings of Royal Society of London A, Vol. 82, pp. 172 - 175.
Sugiyama, S., Shimaoka, K. and Tabata, O., 1991, “Surface micromachined micro-diaphragm pressure sensors” Digest Tech. Papers 1991 International Conference on Solid-State Sensors and Actuators (Transducers ’91), pp. 188–191.
Shimaoka, K., Tabata, O., Kimura, M. and Sugiyama, S., 1993, “Micro-diaphragm pressure sensor using polysilicon sacrificial layer etch-stop technique,” Technology Digest 7th International Conference on Solid-State Sensors and Actuators (Transducers ’93), pp. 632–635
Shih, J. C., Ho, C. M., Liu, J., and Tai, Y. C., 1996, “Monatomic and polyatomic gas flow through uniform microchannels,” ASME DSC, Vol.59, 197–203.
Shikida, M., Sato, K., Tokoro, K., and Uchikawa, D., 2000, “Differences in anisotropic etching properties of KOH and TMAH solutions,” Sensors and Actuators A, Vol. 80, pp. 179-188.
Sharp, K. V., Adrian, R. J., and Beebe, D. J., 2000, “Anomalous transition to turbulence in microtubes,” Proceedings of International Mechanical Engineering Cong. Expo., 5th Micro-Fluidic Symp., Orlando, FL, pp. 150–158.
Shen, C. H. and Gau, C., 2004, “Thermal Chip Fabrication with Arrays of Sensors and Heaters for Micro-Scale Impingement Cooling Heat Transfer Analysis and Measurements,” Biosensors and Bioelectronics, Vol. 20(1), pp. 103-114.
Svasek, P., Svasek, E., Lendl, B., Vellekoop, M., 2004, “Fabrication of miniaturized fluidic devices using SU-8 based lithography and low temperature wafer bonding,” Sensors and Actuators A, Vol. 115, pp. 591-599.
Shirinov, A. V., and Schomburg, W. K., 2006 “Polymer pressure sensor from PVDF,” Proc. XX Eurosensor, in Göteborg, Schweden Sep 17th - 20th, Vol. 1, pp. 84 – 85.
Touloukina, Y. S., 1970-1979, “Thermophysical properties of matter: the TPRC data series; a compressive compilation of data,” IFI/Plenum, New-York.
Takuto, A., Soo, K. M., Hiroshi, I. and Kenjiro, S., 2000, “An experimental investigation of gaseous flow characteristics in microchannels,” Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale, Banff, Canada, pp. 155-161.
Turner, S. E., Sun, H., Faghri, M., and Gregory, O. J., 2001, “Compressible gas flow through smooth and rough microchannels,” Proceedings of IMECE, New York, USA, HTD-24145.
Trung, N., Nguyen, N. and Wu Z., 2005, “Micromixer-A review,” Journal of Micromechcal and Microengineering, Vol.15(R1-R16).
Vilkner, T., Janasek, D., and Manz, A., 2004, “Micro Total Analysis Systems. Recent Developments,” Analytical Chemistry, Vol.76, pp. 3373-3386.
Wallis, G. and Pomerantz, D. I., 1969, “Field assisted glass–metal sealing” Journal of Applied Physics, Vol. 40, pp. 3946–3949.
Wu, P., and Little, W. H., 1983, “Measurement of friction factor for the flow of gases in very fine channels used for micro-miniature Joule-Thompson refrigerators,” Cryogenics, pp. 272-277.
Wu, P. and Little, W. A., 1984, “Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators,” Cryogenics, Vol. 24, pp. 415-420.
Webb, R. L., Zhang, M., 1998, “Heat transfer and friction in small diameters channels,” Microscale Thermo physics Engineering, Vol. 2, pp. 189–202.
Wu, H. Y., and Cheng, P., 2003, “Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 2519–2525.
Xu, B., Ooi, K. T., Wong, N. T., Liu, C. Y., and Choi, W. K., 1999, ”Liquid flow in microchannels,” Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, CA, pp. 150–158.
Xu, B., Ooi, K. T., Wong, N. T., Liu, C. Y., and Choi, W. K., 2000, ”Experimental investigation of flow friction for liquid flow in microchannels,” International Committing Heat and Mass Transfer, Vol. 27, pp. 1165–1176.
Yu, D., Warrington, R.O., Barron, R., and Ameel, T., 1995, “An experimental and theoretical investigation of fluid flow and heat transfer in microtubes,” Proceedings of ASME/JSME Thermal Engineering Joint Conference, Maui, pp. 523–530.
Zhang, X., Zhang, T. Y., Wong, M., and Zohar, Y., 1998, “Residual-stress relaxation in polysilicon thin films by high- temperature rapid thermal annealing,” Sensors and Actuators A, Vol. 64, pp. 109-115.
Zubel, I., and Kramkowska, M., 2001, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A, Vol. 93, pp. 138-147.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top