|
[1] M.Abbas and G. Jungck, Common fixed point results for non commuting mappings without continuity in cone metric space, J. Math. Anal. Appl. 341(2008), 416-420. [2] A. Azam, M. Arshad, and I. Beg, Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math, 3(2009), 236-241. [3] A. Branciari, A fixed point theorem of Banach-Cacciopoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57, 1-2(2000), 31-37. [4] L. Ciric, Solving the Banach fixed point principle for nonlinear contractions in probabilistic metric space, Nonl. Anal. T.M.A 72(2010), 2009-2018. [5] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. appl. 322(2007), 1468-1476. [6] D. Ilic and V. Rakocevic, Common fixed points for maps on cone metric space, J. Math. Anal. Appl. 341(2008), 876-882. [7] M. Jleli and B. Samet, The Kannan's fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl. 2(2009).no.3. 161-167. [8] S. Rezapour and R. Hamlbarani, Some notes on paper "Cone metric spaces and fixed point theorems of contractive mappings." J. Math. Anal. Appl in press [9] P. Vetro, Common fixed points in cone metric spaces, Rend. Circ. Mat. Palermo 56(2007), 464-468. [10] C. L. Yen, On common fixed points(II), Tamkang J. Math. 4(1973), 57-60.
|