|
[1]Agresti, A. (1990). Categorical Data Analysis. Wiley, New York. [2]Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive logistic regression:A statistical view of boosting. Annals of Statistics, 28, 337-407. [3]Friedman, J., Hastie, T. and Tibshirani, R. (2001). The Elements of Statistical Learning:Data Mining, Inference, and Prediction. Springer, New York [4]James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning: With Applications in R. Springer, New York [5]Kutner, M. H., Nachtsheim, C. J. and Neter, J., Li, W. (2005). Applied Linear Statistic Models. McGraw-Hill Higher Education [6]Lantz, B. (2013). Machine Learning with R. Packt Publishing Ltd [7]Mailund, T. (2017). Beginning Data Science in R: Data Analysis, Visualization, and Modelling for the Data Scientist. Apress [8]Montgomery, D. C., Peck, E. A. and Vining, G. G. (2001). Introduction to Linear Regression Analysis. Wiley, New York [9]Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106. [10]Rahlf, T. (2017). Data Visualisation with R: 100 Examples. Springer [11]Shumway, R. H. and Stoffer, D. S. (2011). Time Series Analysis and Its Applications: With R Examples. Springer, New York
|