跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈柏翔
研究生(外文):Shen, Pai-Hsiang
論文名稱:次世代巨量天線徑分多重接取蜂巢式系統中手機同步及基地台搜尋方法之模擬與實現
論文名稱(外文):Simulation and Implementation of Handset Synchronization and Cell Search Methods for Next Generation Massive Antenna Multipath Division Multiple Access Cellular System
指導教授:周世傑周世傑引用關係
指導教授(外文):Jou, Shyh-Jye
口試委員:黃家齊周世傑劉志尉
口試委員(外文):Huang, Chia-ChiJou, Shyh-JyeLiu, Chih-Wei
口試日期:2018-10-26
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:68
中文關鍵詞:徑分多重接取蜂巢式系統手機同步基地台搜尋實現毫米波
外文關鍵詞:Multipath Division Multiple Access(MDMA)Cellular SystemHandset SynchronizationCell SearchImplementationmmWave
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
我們提出新的方法在徑分多重接取第五代蜂巢式系統中進行手機同步和基地台搜尋。在我們提出的徑分多重接取系統中,使用者資料用時域傳輸,同時我們基於傳送在頻域的控制訊號進行基地台搜尋。在徑分多重接取蜂巢式系統中的基地台搜尋可以區分為四個階段,在第一階段,我們提出了一個新穎的檢測與估計結合架構基於循環前綴去偵測符元邊界和估計小數載波頻率偏移,再來我們可以將偵測到的符元邊界移出符號間干擾區域,這方法的優點是在蜂巢式環境下不需要額外的前序編碼並運用低複雜度演算法達到優異的同步規格。在第二階段,我們提出了一個強大的整數載波頻率偏移偵測,藉由頻域上擁有最大能量的主控制頻的位置來偵測整數載波頻率偏移。在第三階段,我們運用第二大能量的輔控制頻的位子經由修正整數載波頻率偏移後得到細胞基地台的識別碼。在第四階段,我們利用輔控制頻所攜帶的前序編碼做差分檢測來偵測訊框起始位置。在找到訊框起始位置後,基地台搜尋程序就已經完成,我們可以開始運用頻域上的輔控制頻所攜帶的控制訊號進行解調。徑分多重接取蜂巢式系統的模擬結果顯示,在存在使用者干擾的情況下,所提出的同步演算法可以達到錯誤率低於1%和0.05內的正規化殘餘載波頻率偏移,此外藉由提出的整數載波頻率偏移偵測的幫助下,對於基地台識別碼偵測我們可以達到錯誤率低於1%並節省83.3%的偵測時間。在硬體架構設計下,本論文採用TSMC 28nm HPC plus CMOS製成在目標晶片碼片率200MHz下實現手機同步和基地台搜尋模組設計,我們藉由記憶體仲裁器共用記憶體,因此減少36%的記憶體使用量。
In this thesis, we propose a new method to do handset synchronization and cell search procedure in 5G massive antenna multipath division multiple access (MDMA) cellular system. In our proposed MDMA cellular system, the users’ data is transmitted in time domain and do the cell search procedure based on control signals is transmitted in frequency domain at the same time. The cell search procedure is divided into different stages in MDMA cellular system. In the first stage, we propose a novel architecture of the joint detection and estimation to detect the coarse symbol boundary and estimate fractional carrier frequency offset (FCFO) based on cyclic prefix (CP) in time domain. Moreover, we can avoid ISI by shifting the coarse symbol boundary to ISI free region. The advantage of this method is that additional preamble sequence is not required and the complexity of the algorithm is low with very well synchronization in a cellular environment. In the second stage, we propose a robust integer carrier frequency offset (ICFO) detection to obtain the ICFO by the primary control tone (PCT) in frequency domain. In the third stage, we use the secondary control tones (SCT) to obtain SCT position and obtain cell ID by ICFO adjustment. In the fourth stage, we use the preamble sequence which is carried by the secondary control tones to detect frame header by differential detection. After detecting frame header, the cell search procedure is completed and we can start to demodulate the control data by the secondary control tones in frequency domain. The simulation results of MDMA cellular system shows that, under the interference of users’ data, the proposed synchronization algorithms can achieve failure rate less than 1% and the normalized residual carrier frequency offset is less than 0.05. Moreover, by the proposed ICFO detection, we can save 83.3% detection time for cell ID detection to achieve the failure rate of 1%. For a hardware implementation, we adopt TSMC 28nm HPC plus CMOS process to implement the handset synchronization and cell search modules. The target chip rate is 200 MHz and we use memory arbiter to share memory. Hence, the memory usage is reduced by 36%.
摘 要 i
Abstract iii
誌 謝 v
Contents vii
List of Tables ix
List of Figures x
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Overview of MDMA Cellular System 2
1.3 Motivation 4
1.4 Synchronization 4
1.5 Thesis Organization 6
Chapter 2 Introduction of MDMA Cellular System and System Model 8
2.1 Cellular Communication System 8
2.2 System Model 9
2.2.1 Channel Model 10
2.2.2 Frame Structure 13
2.2.3 Preamble Sequence 16
2.3 Symbol Timing Offset 19
2.4 Carrier Frequency Offset 20
2.5 Summary 21
Chapter 3 Synchronization Algorithm for MDMA Mobile Receiver 23
3.1 Symbol Timing Detection 23
3.1.1 Simulation Results of Symbol Timing Detection 29
3.2 Carrier Frequency Offset Estimation and Detection 33
3.2.1 Factional Carrier Frequency Offset Estimation 33
3.2.2 Integer Carrier Frequency Offset Detection 34
3.2.3 Simulation Results of Fractional CFO Estimation 37
3.2.4 Simulation Results of Integer CFO Detection 38
3.3 Cell ID Detection 40
3.3.1 Simulation Results of Cell ID Detection 42
3.4 Frame Synchronization 43
3.4.1 Simulation Results of Frame Synchronization 47
3.5 Summary 48
Chapter 4 Hardware Implementation 50
4.1 Hardware Implementation Consideration 50
4.1.1 Symbol Timing Detection 53
4.1.2 Fractional CFO Estimation and Compensation 56
4.1.3 Integer CFO Detection and Cell ID Detection 57
4.1.4 Frame Synchronization 58
4.2 Shared Memory Arrangement 60
4.3 RTL Synthesis Results 61
Chapter 5 Conclusion and Future Work 64
Reference 66
[1] A. Osseiran, V. Braun, T. Hidekazu, P. Marsch, H. Schotten, H. Tullberg, M. A. Uusitalo and M. Schellmann, “The foundation of the mobile and wireless communications system for 2020 and beyond: Challenges, Enablers and technology solutions,” IEEE Vehicular Technology Conference, pp. 1–5, 2013.
[2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong and J. C. Zhang, “What will 5G be?,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065–1082, 2014.
[3] “An overview of millimeter radio waves, their characteristics, pros and cons, and applications.” [Online]. Available: https://www.electronicdesign.com/communications/millimeter-waves-will-expand-wireless-future.
[4] E. G. Larsson, O. Edfors, F. Tufvesson and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186–195, 2014.
[5] W. H. Hsiao and C. C. Huang, “A novel 5G TDD cellular system proposal based on multipath division multiple access,” International Conference on Advanced Communication Technology, ICACT, vol. 5, no. 6, pp. 936–942, 2017.
[6] W. H. Hsiao and C. C. Huang, “Multipath division multiple access for 5G cellular system based on massive antennas in millimeter wave band,” International Conference on Advanced Communication Technology, ICACT, vol. 2016–March, pp. 741–746, 2016.
[7] S. Y. Wang, W. H. Hsiao, K. L. Chiu and C. C. Huang, “Multipath Division Multiple Access for 5G Millimeter Wave Cellular Systems,” IEEE Vehicular Technology Conference, pp. 1–7, 2018.
[8] S. Sesia, I. Toufik and M. Baker, LTE - The UMTS Long Term Evolution, From Theory to Practice. WILEY, 2011.
[9] M. Samimi, K. Wang, Y. Azar, G. N. Wong, R. Mayzus, H. Zhao, J. K. Schulz, S. Sun, F. Gutierrez, Jr. and T. S. Rappaport, “28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York City,” IEEE Vehicular Technology Conference, 2013.
[10] Y. Azar, G. N. Wong, K. Wang, R. Mayzus, J. K. Schulz, H. Zhao, F. Gutierrez, Jr., D. Hwang and T. S. Rappaport, “28 GHz Propagation Measurements for Outdoor Cellular Communications Using Steerable Beam Antennas in New York City,” IEEE International Conference on Communications, 2013.
[11] M. R. Akdeniz, Y.Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport and E. Erkip, “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1164–1179, 2014.
[12] G. R. Maccartney, J. Zhang, S. Nie and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in urban microcells,” GLOBECOM - IEEE Global Telecommunications Conference, pp. 3948–3953, 2013.
[13] S. Sun and T. S. Rappaport, “Multi-beam antenna combining for 28 GHz cellular link improvement in urban environments,” GLOBECOM - IEEE Global Telecommunications Conference, pp. 3754–3759, 2013.
[14] A. A. M. Saleh and R. A. Valenzuela, “A Statistical Model for Indoor Multipath Propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137, 1987.
[15] G. L. Turin, F. D. Clapp, T. L. Johnston, S. B. Fine and D. Lavry, “A statistical model of urban multipath propagation,” IEEE Transactions on Vehicular Technology, vol. 21, no. 1, pp. 1–9, 1972.
[16] T. D. Chiueh and P. Y. Tsai, Baseband Receiver Design for Wireless MIMO-OFDM Communications. 2012.
[17] J. J. van de Beek, M. Sandell and P. O. Borjesson, "ML estimation of time and frequency offset in OFDM systems," in IEEE Transactions on Signal Processing, vol. 45, no. 7, pp. 1800-1805, July 1997.
[18] M. Speth, F. Classen and H. Meyr, “Frame synchronization of OFDM systems in frequency selective fading channels,” 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, vol. 3, pp. 1807–1811, 1997.
[19] D. Lee and K. Cheun, “Coarse symbol synchronization algorithms for OFDM systems in multipath channels,” IEEE Communications Letters, vol. 6, no. 10, pp. 446–448, 2002.
[20] W. C. Liu, “Design for Indoor Wireless Digital Baseband Receiver at 60 GHz Band and Timing-Error Resilient Circuit,” Ph.D. dissertation, Dept. of EE, National Chiao Tung University, Hsinchu, Taiwan, Sep., 2014.
[21] B. R. Lin, “A Study on Handset Synchronization and Cell Search Methods for 5G Cellular System based on Massive Antennas in Millimeter Wave Band,” M.S. thesis, Dept of EE, National Chiao Tung University, Hsinchu, Taiwan, Jul., 2016.
[22] W. C. Lee, “Phase Noise-Robust Synchronization and Phase Noise Compensation Design for 10Gbps Single Carrier Baseband Receiver at 60 GHz Band,” M.S. thesis, Dept of EE, National Chiao Tung University, Hsinchu, Taiwan, Feb., 2017.
[23] W. H. Hsiao, Y. W. Shih and C. C. Huang, “Case study and performance evaluation of MDMA–A non-orthogonal multiple access scheme for 5G cellular systems,” Mobile Networks and Applications, 2017.
[24] S. Baumgartner, Y. E. H. Shehadeh and G. Hirtz, "A modified symbol timing and frequency synchronization method based on cyclic prefix for OFDM systems," 2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA), Pardubice, 2015, pp. 331-334.
[25] DFT/FFT IP Core Generator,” SpiralGen, Inc. [Online]. Available: http://www.spiral.net/hardware/dftgen.html.
[26] S. C. Hsu “A Low-complexity Parallel Radix-2^k Serial Commutator and A Mixed-Radix 2^α 3^β 5^γ-point FFT Processor,” M.S. thesis, Dept of EE, National Chiao Tung University, Hsinchu, Taiwan, Sep., 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 60 GHz 頻帶基於濾波器組多載波技術與循環前綴正交分頻多工加權重疊累加技術之數位基頻接收機設計及效能評估
2. 60GHz頻帶單一載波基頻接收機之同相與正交分量不平衡及直流偏壓準位偏移的聯合適應估測與補償設計
3. 60 GHz頻帶10 Gbps單一載波基頻接收機的可抵抗高相雜訊之同步與相雜訊補償設計
4. 建構與應用特殊語詞資訊於文件重排序之研究
5. 應用相關回饋之醫學字詞資訊於醫學查詢擴展之方法
6. 整合查詢擴展融合與MeSH醫學字詞重排序之醫學文件檢索方法
7. 採用多相位連鎖數位控制震盪器陣列的可合成注入式鎖相迴路
8. 應用於60GHz頻帶10Gps單一載波基頻接收機之仿真最小均方誤差線性等化器
9. 發展一個整合應用視覺詞頻率與文字語意於自動圖像註解系統的方法
10. 利用語意分析於相關回饋以進行查詢擴展之方法
11. 應用語意分析資訊於相關回饋以進行文件分類之方法
12. 應用查詢擴展字詞及原始查詢字詞之語意資訊於文件重排序之方法
13. 應用於60GHz頻帶10Gbps單一載波基頻之脈波成形和同相與正交分量不平衡及直流偏壓準位偏移聯合補償設計
14. 次奈秒讀寫及次毫瓦每千兆赫茲之32Kb 5T靜態隨機存取記憶體和靜態隨機存取記憶體內運算之多位元緩衝器設計
15. 工作於次奈秒讀取且次毫瓦每千兆赫茲之28奈米製程0.45伏電壓之32Kb 5T之靜態隨機存取記憶體與記憶體內運算架構