|
[1]I. Maglogiannis, H. Sarimveis, C.T. Kiranoudis, A.A. Chatziioannou, N. Oikonomou, and V. Aidinis, &;quot;Radial basis function neural netwroks classification for the recognition of idiopathic pulmonary fibrosis in microscopic images,&;quot; IEEE Transaction on Information Technology in Biomedicine, vol. 12, pp. 42-54, January 2008. [2]B.S. Lin, B.S. Lin, F.C. Chong, and F. Lai, &;quot;Higher-order-statisticsbased radial basis function networks for signal enhancement,&;quot; IEEE Transactions on Neural Networks, vol. 18, pp.823-832, May 2008. [3]R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Addison Wesley, 1999. [4]G. Tsoumkas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, &;quot;A java library for multi-label learning,&;quot; Journal of Machine Learning Research, 2011. [5]G. Salton and M. J. McGill, Introduction to Modern Retrieval. McGraw-Hill Book Company, 1983. [6]A. Elisseeff and J. Weston, &;quot;A kernel method for multi-labelled classification,&;quot; Advances in Neural Information Processing Systems 14, MIT Press, Cambridge, pp. 681–687, 2002. [7]H. Leung, T. Lo, and S. Wang, &;quot;Prediction of noisy chaotic time series using an optimal radial basis function neural network,&;quot; IEEE Transactions on Neural Networks, vol. 12, pp. 1163-1172, September 2001. [8]S.M. Chen and C.D Chen, &;quot;TAIEX forecasting based on fuzzy time series and fuzzy variation groups,&;quot; IEEE Transactions on Fuzzy Systems, vol. 19, pp. 1-12, February 2011. [9]S.M. Chen, H.P. Chu, and T.W. Sheu, &;quot;TAIEX forecasting using fuzzy time series and automatically generated weighted of multiple factors,&;quot; IEEE Transactions on System, Man, and Cybernetics, Part A, vol. 42, pp. 1485-1495, November 2012. [10]A. Kusiak, H. Zheng, and Z. Song, &;quot;Short-term prediction of wind farm power: A data mining approach,&;quot; IEEE Transactions on Energy Conversion, vol. 24, pp. 125-136, March 2009. [11]D.W. Aha, &;quot;Lazy learning: Special issue editorial,&;quot; Artificial Intelligence Review, vol. 24, pp. 125-136, February 1997. [12]J. MacQueen, &;quot;Some methods for classification and analysis of multivariate observations,&;quot; Proceedings of 5-th Berkeley Symposium on Mathmatical Satistics and Probability, Berkeley, University of California press, vol. 1, pp. 281-297, 1967. [13]T. Mitchell, Machine Learning. McGraw-Hill, 1997. [14]T. Kohonen, Self-organizaing Maps. Springer, 1995. [15]N.B. Karayiannis, &;quot;Reformulated radial basis neural networks trained by gradient descent,&;quot; IEEE Transactions on Neural Networks, vol. 12, pp. 1163-1172, May 1999. [16]M.J.L. Orr, Introduction to radial basis function networks. Centre for Cognitive Science, University of Edinburgh, 2, Buccleuch Place, Edinburgh EH8 9LW, Scotland, 1996. [17]S. Haykin, Neural Network- A Comprehensive Foundation. Upper Saddle River, NJ, USA: Prentice - Hall, 1999. [18]C. Cortes and V. Vapnik, &;quot;Support-Vector networks,&;quot; Machine Learning, vol. 20, pp. 273-297, 1995. [19]T. Joachims, &;quot; Text categorization with support vector machines: Learning with many relevant features,&;quot; European Conference on Machine Learning, pp. 137-142, 1998. [20]S.R. Gunn, Support Vector Machines for Classification and Regression. UNIVERSITY OF SOUTHAMPTON, 1998. [21]M.W. Mak and S.Y. Kung, &;quot;Estimation of elliptical basis function parameters by the EM algorithm with application to speaker verification,&;quot; IEEE Transactions on Neural Networks, vol. 11, pp. 961-969, July 2000. [22]J.C. Luo, Q.X. Chem, J. Zheng, Y. Leung, and J.H. Ma, &;quot;An elliptical basis function network for classification of remote-sensing images,&;quot; IEEE International on Geoscience and Remote Sensing Symposium, vol. 6, pp. 3489-3494, 2003. [23]S. Jaiyen, C. Lursinsap, and S. Phimoltares, &;quot;A very fast neural learning for classification using only new incoming datum,&;quot; IEEE Transactions on Neural Networks, vol. 21, pp. 381-392, March 2010. [24]G. Tsoumakas and I. Katakis, &;quot;Multi-label classification: An overview,&;quot; International Journal of Data Warehousing and Mining, vol. 3, pp. 1-13, 2007. [25]G. Tsoumakas, I. Katakis and I. Vlahavas, &;quot;Random k-labelsets for multi-label classification,&;quot; IEEE Transactions on Knowledge and Data Engineering, vol. 23, pp. 1079-1088, July 2011. [26]M. Boutell, J. Luo, X. Shen, and C. Brown, &;quot;Learning multi-label scene classification,&;quot; Pattern Recognition, vol. 37, pp. 1757-1771, March 2004. [27]H.Y. Lo, S.D. Lin, and H.M. Wang, &;quot;Generalized k-labelsets ensemble for multi-label and cost-sensitive classification,&;quot; IEEE Transactions on Knowledge and Data Engineering, vol. 26, pp. 1679-1691, July 2014. [28]R.E. Schapire and Y. Singer, &;quot;BoosTexter: A boosting-based system for text categorization,&;quot; Machine Learning, vol. 39, pp. 135-168, May 2000. [29]A. McCallum, &;quot;Multi-label text classification with a mixture model trained by EM,&;quot; Working Notes of the AAAI99 Workshop on Text Learning, 1999. [30]M.L. Zhang and Z.H. Zhou, &;quot;Multilabel neural networks with applications to functional genomics and text categorization,&;quot; IEEE Transactions on Knowledge and Data Engineering, vol. 18, pp. 1138-1351, October 2006. [31]M.L. Zhang and Z.H. Zhou, &;quot;MLKNN: A lazy learning approach to multi-label learning,&;quot; Pattern Recognition, vol. 40, pp. 2038-2048, July 2007. [32]M.L. Zhang, &;quot;ML-RBF: RBF neural networks for multi-label learning,&;quot; Neural Processing Letters, vol. 29, pp. 61-74, April 2009. [33]A.J. Smola and B. Scholkopf, &;quot;A tutorial on support vector regression,&;quot; Statistics and Computing, vol. 14, pp. 199-222, August 2004. [34]G.Wang, D.Y. Yeung, and F.H. Lochovsky, &;quot;A new solution path algorithm in support vector regression,&;quot; IEEE Transactions on Neural Networks, vol. 19, pp. 1753-1767, October 2008. [35]D. Li, R.M. Mersereau, and S. Simske, &;quot;Blind image deconvolution through support vector regression,&;quot; IEEE Transactions on Neural Networks, vol. 18, pp. 931-935, May 2007. [36]D.H. Hong and C. Hwang, &;quot;Interval regression analysis using quadratic loss support vector machine,&;quot; IEEE Transactions on Fuzzy Systems, vol. 13, pp. 229-237, April 2005. [37]C.C Chuang, &;quot;Fuzzy weighted support vector regression with a fuzzy partition,&;quot; IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics, vol. 37, pp. 630-640, June 2007. [38]P.Y. Hao and J.H. Chiang, &;quot;Fuzzy regression analysis by support vector learning approach,&;quot; IEEE Transactions on Fuzzy Systems, vol. 16, pp. 428-441, April 2008. [39]S.J. Lee and C.S. Ouyang, &;quot;A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning,&;quot; IEEE Transactions on Fuzzy Systems, vol. 11, pp. 341-353, June 2003. [40]J.A.K. Suykens and J. Vandewalle, &;quot;Least squares support vector machine classifiers,&;quot; Neural Process Letter, vol. 9, pp. 293-300, June 1999. [41]G.B. Huang, Q.Y. Zhu, and C.K. Siew, &;quot;Extreme learning machine: A new learning scheme of feedforward neural networks,&;quot; Proceeding IJCNN, vol. 2, pp. 985-990, 2004. [42]G.B. Huang, H.M. Zhou, X.J. Ding, and R. Zhang, &;quot;Extreme learning machine for regression and multiclass classification,&;quot; IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics, vol. 42, pp. 513-529, April 2012. [43]G.H. Golub and C.F.V. Loan, Matrix computations. Baltimore, MD, USA: The Johns Hopkins University Press, 1996. [44]K. Pearson, &;quot;On lines and planes of closest fit to systems of points in space,&;quot; Philosophical Magazine, vol. 52, pp. 559-572, 1901. [45]H. Hotelling, &;quot;Analysis of a complex of sattistical variables into principal componetns,&;quot; Journal of Educational Psychology, vol. 24, pp. 417-4412, 1933. [46]A. Asuncion and D. Newman. UCI machine learning repository. Schl. Inf. Comput. Sci. Univ. California, Irvine, CA, 2007 [47]N.T. Hagna, H.B. Demuth, and M.H. Beale, Neural network design. PWS Pub. Co., 1995. [48]MATLAB SVM. Available: http://www.mathworks.com/help/stats/svmtrain.html. [49]G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, &;quot;Mulan: A Java library for multi-label learning,&;quot; Journal of Machine Learning Research, vol. 12, pp. 2411-2414, 2011. [50]Mulan: A Java library for multi-label learning. Available: http://mulan.sourceforge.net/datasets-mlc.html. [51]Code for multi-label classification learning . Available: http://cse.seu.edu.cn/people/zhangml/resources.htm. [52]M.Mike, Statistical datasets. Dept. Statist. Univ. Carnegie Mellon, Pittsburgh, PA, 1989. [53]StatLib dataset. Available: http://lib.stat.cmu.edu/datasets/.
|