|
1.Rawls, H.R., Demtal Polymers, in Phillips'' science of dental materials, A. KJ, Editor 2003: Saunders, St Louis, Mo. p. 143-169. 2.鍾國雄, 復形用樹脂(Restorative Resins), in 牙科材料學, 鍾國雄, Editor 2004. p. 351-385. 3.Powers, J.M. and R.L. Sakaguchi, Polymers and Polymerization, in Craig''s Restorative Dental Materials, J.M. Powers and R.L. Sakaguchi, Editors. 2006, Mosby, Inc.: St. Louis, Missouri. p. 150-159. 4.Park, Y.J., K.H. Chae, and H.R. Rawls, Development of a new photoinitiation system for dental light-cure composite resins. Dental Materials, 1999. 15(2): p. 120-127. 5.Stansbury, J.W., Curing Dental Resins and Composites by Photopolymerization. Journal of Esthetic and Restorative Dentistry, 2000. 12(6): p. 300-308. 6.Neumann, M.G., et al., The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dental Materials, 2006. 22(6): p. 576-584. 7.Asmussen, E., Factors affecting the quantity of remaining double bonds in restorative resin polymers. European Journal of Oral Sciences, 1982. 90(6): p. 490-496. 8.Lohbauer, U., et al., The effect of different light-curing units on fatigue behavior and degree of conversion of a resin composite. Dental Materials, 2005. 21(7): p. 608-615. 9.DeWald, J.P. and J.L. Ferracane, A Comparison of Four Modes of Evaluating Depth of Cure of Light-activated Composites. Journal of Dental Research, 1987. 66(3): p. 727-730. 10.Rueggeberg, F.A. and R.G. Craig, Correlation of Parameters used to Estimate Monomer Conversion in a Light-cured Composite. Journal of Dental Research, 1988. 67(6): p. 932-937. 11.Pianelli, C., et al., The micro-Raman spectroscopy, a useful tool to determine the degree of conversion of light-activated composite resins. Journal of Biomedical Materials Research, 1999. 48(5): p. 675-681. 12.Ferracane, J.L., Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dental Materials, 1985. 1(1): p. 11-14. 13.Moraes, L.G.P., et al., Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. Journal of Applied Oral Science, 2008. 16: p. 145-149. 14.Introduction to Fourier Transform Infrared Spectrometry. Available from: http://mmrc.caltech.edu/mmrc_html/FTIR/FTIRintro.pdf. 15.李匡邦,許東明,何東英, 拉曼光譜, in 光譜化學分析1997, 揚智文化. p. 282-306. 16.Cook, W.D., Spectral Distributions of Dental Photopolymerization Sources. Journal of Dental Research, 1982. 61(12): p. 1436-1438. 17.Rueggeberg, F.A., Contemporary issues in photocuring. Compend Contin Educ Dent, 1999. 20: p. 4. 18.Aravamudhan, K., et al., Light-emitting diode curing light irradiance and polymerization of resin-based composite. The Journal of the American Dental Association, 2006. 137(2): p. 213-223. 19.Uno, S. and E. Asmussen, Marginal adaptation of a restorative resin polymerized at reduced rate. European Journal of Oral Sciences, 1991. 99(5): p. 440-444. 20.Feilzer, A.J., A.J. De Gee, and C.L. Davidson, Quantitative determination of stress reduction by flow in composite restorations. Dental Materials, 1990. 6(3): p. 167-171. 21.Dewaele, M., et al., Volume contraction in photocured dental resins: The shrinkage-conversion relationship revisited. Dental Materials, 2006. 22(4): p. 359-365. 22.Bouschlicher, M.R., F.A. Rueggeberg, and D.B. Boyer, Effect of Stepped Light Intensity on Polymerization Force and Conversion in a Photoactivated Composite. Journal of Esthetic and Restorative Dentistry, 2000. 12(1): p. 23-32. 23.Bouschlicher, M.R. and F.A. Rueggeberg, Effect of Ramped Light Intensity on Polymerization Force and Conversion in a Photoactivated Composite. Journal of Esthetic and Restorative Dentistry, 2000. 12(6): p. 328-339. 24.Yap, A.U., M.S. Soh, and K.S. Siow, Post-gel shrinkage with pulse activation and soft-start polymerization. Operative dentistry, 2002. 27(1): p. 81-7. 25.Yoshikawa, T., M.F. Burrow, and J. Tagami, A light curing method for improving marginal sealing and cavity wall adaptation of resin composite restorations. Dental Materials, 2001. 17(4): p. 359-366. 26.Silikas, N., G. Eliades, and D.C. Watts, Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dental Materials, 2000. 16(4): p. 292-296. 27.Sakaguchi, R.L. and H.X. Berge, Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. Journal of Dentistry, 1998. 26(8): p. 695-700. 28.Asmussen, E. and A. Peutzfeld, Influence of Pulse-Delay Curing on Softening of Polymer Structures. Journal of Dental Research, 2001. 80(6): p. 1570-1573. 29.Asmussen, E. and A. Peutzfeldt, Influence of selected components on crosslink density in polymer structures. European Journal of Oral Sciences, 2001. 109(4): p. 282-285. 30.Asmussen, E. and A. Peutzfeldt, Two-step curing: influence on conversion and softening of a dental polymer. Dental Materials, 2003. 19(6): p. 466-470. 31.Tamareselvy, K. and F.A. Rueggeberg, Dynamic mechanical analysis of two crosslinked copolymer systems. Dental Materials, 1994. 10(5): p. 290-297. 32.Peutzfeldt, A. and E. Asmussen, Resin Composite Properties and Energy Density of Light Cure. Journal of Dental Research, 2005. 84(7): p. 659-662. 33.Halvorson, R.H., R.L. Erickson, and C.L. Davidson, Energy dependent polymerization of resin-based composite. Dental Materials, 2002. 18(6): p. 463-469. 34.Dewaele, M., et al., Influence of curing protocol on selected properties of light-curing polymers: Degree of conversion, volume contraction, elastic modulus, and glass transition temperature. Dental Materials, 2009. 25(12): p. 1576-1584. 35.Benetti, A.R., et al., Softening and elution of monomers in ethanol. Dental Materials, 2009. 25(8): p. 1007-1013. 36.Soh, M.S. and A.U.J. Yap, Influence of curing modes on crosslink density in polymer structures. Journal of Dentistry, 2004. 32(4): p. 321-326. 37.Emami, N. and K.-J.M. Soderholm, How light irradiance and curing time affect monomer conversion in light-cured resin composites. European Journal of Oral Sciences, 2003. 111(6): p. 536-542. 38.Price, R.B.T., C.A. Felix, and P. Andreou, Effects of resin composite composition and irradiation distance on the performance of curing lights. Biomaterials, 2004. 25(18): p. 4465-4477. 39.Leprince, J.G., et al., Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dental Materials, 2011. 27(2): p. 157-164. 40.Calheiros, F.C., et al., Influence of irradiant energy on degree of conversion, polymerization rate and shrinkage stress in an experimental resin composite system. Dental Materials, 2008. 24(9): p. 1164-1168. 41.Hadis, M., et al., High irradiance curing and anomalies of exposure reciprocity law in resin-based materials. Journal of Dentistry, 2011. 39(8): p. 549-557. 42.Witzel, M.F., et al., Influence of photoactivation method on conversion, mechanical properties, degradation in ethanol and contraction stress of resin-based materials. Journal of Dentistry, 2005. 33(9): p. 773-779. 43.Goncalves, F., et al., Effect of photoactivation protocol and radiant exposure on monomer conversion and flexural strength of a resin composite after water and ethanol storage. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007. 82B(1): p. 89-92. 44.Atai, M. and F. Motevasselian, Temperature rise and degree of photopolymerization conversion of nanocomposites and conventional dental composites. Clinical Oral Investigations, 2009. 13(3): p. 309-316. 45.Tseng, W.-Y., et al., Effects on microstrain and conversion of flowable resin composite using different curing modes and units. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007. 81B(2): p. 323-329. 46.Rahiotis, C., et al., Curing efficiency of various types of light-curing units. European Journal of Oral Sciences, 2004. 112(1): p. 89-94. 47.Mortier, E., et al., Influence of Curing Mode with a LED Unit on Polymerization Contraction Kinetics and Degree of Conversion of Dental Resin-Based Materials. Journal of Dentistry for Children, 2009. 76(2): p. 149-155. 48.Ilie, N., E. Jelen, and R. Hickel, Is the soft-start polymerisation concept still relevant for modern curing units? Clinical Oral Investigations, 2011. 15(1): p. 21-29. 49.Schneider, L.F.J., et al., Cross-link density evaluation through softening tests: Effect of ethanol concentration. Dental Materials, 2008. 24(2): p. 199-203. 50.Lindberg, A., A. Peutzfeldt, and J.V. van Dijken, Curing depths of a universal hybrid and a flowable resin composite cured with quartz tungsten halogen and light‐emitting diode units. Acta Odontologica Scandinavica, 2004. 62(2): p. 97-101. 51.Lindberg, A., A. Peutzfeldt, and J.W.V. van Dijken, Effect of power density of curing unit, exposure duration, and light guide distance on composite depth of cure. Clinical Oral Investigations, 2005. 9(2): p. 71-76. 52.Besnault, C., et al., Effect of a LED versus halogen light cure polymerization on the curing characteristics of three composite resins. American journal of dentistry, 2003. 16(5): p. 323-8. 53.Chung, K.H. and E.H. Greener, Correlation between degree of conversion, filler concentration and mechanical properties of posterior composite resins. Journal of Oral Rehabilitation, 1990. 17(5): p. 487-494. 54.Rencz, A., R. Hickel, and N. Ilie, Curing efficiency of modern LED units. Clinical Oral Investigations, 2012. 16(1): p. 173-179. 55.Shin, W.S., et al., Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy. Dental Materials, 1993. 9(5): p. 317-324.
|