跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 15:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許璧伃
研究生(外文):Pi-Yu Hsu
論文名稱:光聚合模式對樹脂聚合度與軟化程度之影響
論文名稱(外文):Effect of curing protocol on degree of conversion and softening of light-curing polymers
指導教授:洪純正
指導教授(外文):Chun-Cheng Hung
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:68
中文關鍵詞:聚合模式複合樹脂傅立葉紅外線吸收光譜儀聚合度微硬度樹脂軟化交聯結構
外文關鍵詞:curing modesdental polymersFTIRdegree of conversionmicrohardnesssoftening of composite resincrosslinking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光聚合樹脂在牙科的應用佔有重要的角色,本研究目的是探討不同光照模式對複合樹脂之聚合度、硬度,與樹脂軟化程度之影響。實驗設計四種不同光照模式:低強度連續照射、高強度連續照射、ramp curing technique和pulse-delay curing technique來照射樹脂。利用傅立葉紅外線吸收光譜儀計算其聚合度。使用微硬度測試機測試樹脂硬度與浸泡酒精後軟化的情形。用SPSS統計軟體以one-way ANOVA和相關分析來探討不同照射模式之間的差異。結果發現pulse-delay curing technique在樹脂底面聚合度較差。而低強度連續照射其底面的硬度值最低。樹脂被酒精軟化程度最少的為ramp curing technique,亦即有最強的交聯結構。結論是使用ramp curing technique可以得到最好的聚合度、硬度,與交聯結構。

Objective. The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), and softening of dental composite polymers.
Methods. Different curing-protocols were used to investigate the influence of power density and mode of cure on the properties. The modes of cure were continuous with different power intensity, ramp, and pulse-delay irradiation. Degree of conversion was measured by Fourier transform infrared spectroscopy (FTIR). Softening of composite polymers was measured with microhardness before and after ethanol storage. Data were submitted to one-way ANOVA, and correlation analysis with SPSS software.
Results. Modes of cure influenced the degree of conversion, microhardness and softening of the polymer. Pulse-delay mode has lower degree of conversion on the bottom of resin. Compare lower power density in continuous mode to other curing modes: lower power density in continuous mode resulted in decreased microhardness of bottom surfaces. Ramp-curing mode has the least softening of composite resin.
Conclusion. The ramp curing mode has the best overall performances of degree of conversion, microhardness and softening in ethanol.


中文摘要 ---------------------------------------------------5
英文摘要 ---------------------------------------------------6
第一章
前言-------------------------------------------------------7
第二章
文獻回顧---------------------------------------------------8研究目的---------------------------------------------------18
第三章
研究材料與方法----------------------------------------------19
研究結果---------------------------------------------------22
第四章
討論------------------------------------------------------29
結論------------------------------------------------------42
參考文獻---------------------------------------------------43
附錄
表--------------------------------------------------------48圖--------------------------------------------------------60


1.Rawls, H.R., Demtal Polymers, in Phillips'' science of dental materials, A. KJ, Editor 2003: Saunders, St Louis, Mo. p. 143-169.
2.鍾國雄, 復形用樹脂(Restorative Resins), in 牙科材料學, 鍾國雄, Editor 2004. p. 351-385.
3.Powers, J.M. and R.L. Sakaguchi, Polymers and Polymerization, in Craig''s Restorative Dental Materials, J.M. Powers and R.L. Sakaguchi, Editors. 2006, Mosby, Inc.: St. Louis, Missouri. p. 150-159.
4.Park, Y.J., K.H. Chae, and H.R. Rawls, Development of a new photoinitiation system for dental light-cure composite resins. Dental Materials, 1999. 15(2): p. 120-127.
5.Stansbury, J.W., Curing Dental Resins and Composites by Photopolymerization. Journal of Esthetic and Restorative Dentistry, 2000. 12(6): p. 300-308.
6.Neumann, M.G., et al., The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dental Materials, 2006. 22(6): p. 576-584.
7.Asmussen, E., Factors affecting the quantity of remaining double bonds in restorative resin polymers. European Journal of Oral Sciences, 1982. 90(6): p. 490-496.
8.Lohbauer, U., et al., The effect of different light-curing units on fatigue behavior and degree of conversion of a resin composite. Dental Materials, 2005. 21(7): p. 608-615.
9.DeWald, J.P. and J.L. Ferracane, A Comparison of Four Modes of Evaluating Depth of Cure of Light-activated Composites. Journal of Dental Research, 1987. 66(3): p. 727-730.
10.Rueggeberg, F.A. and R.G. Craig, Correlation of Parameters used to Estimate Monomer Conversion in a Light-cured Composite. Journal of Dental Research, 1988. 67(6): p. 932-937.
11.Pianelli, C., et al., The micro-Raman spectroscopy, a useful tool to determine the degree of conversion of light-activated composite resins. Journal of Biomedical Materials Research, 1999. 48(5): p. 675-681.
12.Ferracane, J.L., Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dental Materials, 1985. 1(1): p. 11-14.
13.Moraes, L.G.P., et al., Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. Journal of Applied Oral Science, 2008. 16: p. 145-149.
14.Introduction to Fourier Transform Infrared Spectrometry. Available from: http://mmrc.caltech.edu/mmrc_html/FTIR/FTIRintro.pdf.
15.李匡邦,許東明,何東英, 拉曼光譜, in 光譜化學分析1997, 揚智文化. p. 282-306.
16.Cook, W.D., Spectral Distributions of Dental Photopolymerization Sources. Journal of Dental Research, 1982. 61(12): p. 1436-1438.
17.Rueggeberg, F.A., Contemporary issues in photocuring. Compend Contin Educ Dent, 1999. 20: p. 4.
18.Aravamudhan, K., et al., Light-emitting diode curing light irradiance and polymerization of resin-based composite. The Journal of the American Dental Association, 2006. 137(2): p. 213-223.
19.Uno, S. and E. Asmussen, Marginal adaptation of a restorative resin polymerized at reduced rate. European Journal of Oral Sciences, 1991. 99(5): p. 440-444.
20.Feilzer, A.J., A.J. De Gee, and C.L. Davidson, Quantitative determination of stress reduction by flow in composite restorations. Dental Materials, 1990. 6(3): p. 167-171.
21.Dewaele, M., et al., Volume contraction in photocured dental resins: The shrinkage-conversion relationship revisited. Dental Materials, 2006. 22(4): p. 359-365.
22.Bouschlicher, M.R., F.A. Rueggeberg, and D.B. Boyer, Effect of Stepped Light Intensity on Polymerization Force and Conversion in a Photoactivated Composite. Journal of Esthetic and Restorative Dentistry, 2000. 12(1): p. 23-32.
23.Bouschlicher, M.R. and F.A. Rueggeberg, Effect of Ramped Light Intensity on Polymerization Force and Conversion in a Photoactivated Composite. Journal of Esthetic and Restorative Dentistry, 2000. 12(6): p. 328-339.
24.Yap, A.U., M.S. Soh, and K.S. Siow, Post-gel shrinkage with pulse activation and soft-start polymerization. Operative dentistry, 2002. 27(1): p. 81-7.
25.Yoshikawa, T., M.F. Burrow, and J. Tagami, A light curing method for improving marginal sealing and cavity wall adaptation of resin composite restorations. Dental Materials, 2001. 17(4): p. 359-366.
26.Silikas, N., G. Eliades, and D.C. Watts, Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dental Materials, 2000. 16(4): p. 292-296.
27.Sakaguchi, R.L. and H.X. Berge, Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. Journal of Dentistry, 1998. 26(8): p. 695-700.
28.Asmussen, E. and A. Peutzfeld, Influence of Pulse-Delay Curing on Softening of Polymer Structures. Journal of Dental Research, 2001. 80(6): p. 1570-1573.
29.Asmussen, E. and A. Peutzfeldt, Influence of selected components on crosslink density in polymer structures. European Journal of Oral Sciences, 2001. 109(4): p. 282-285.
30.Asmussen, E. and A. Peutzfeldt, Two-step curing: influence on conversion and softening of a dental polymer. Dental Materials, 2003. 19(6): p. 466-470.
31.Tamareselvy, K. and F.A. Rueggeberg, Dynamic mechanical analysis of two crosslinked copolymer systems. Dental Materials, 1994. 10(5): p. 290-297.
32.Peutzfeldt, A. and E. Asmussen, Resin Composite Properties and Energy Density of Light Cure. Journal of Dental Research, 2005. 84(7): p. 659-662.
33.Halvorson, R.H., R.L. Erickson, and C.L. Davidson, Energy dependent polymerization of resin-based composite. Dental Materials, 2002. 18(6): p. 463-469.
34.Dewaele, M., et al., Influence of curing protocol on selected properties of light-curing polymers: Degree of conversion, volume contraction, elastic modulus, and glass transition temperature. Dental Materials, 2009. 25(12): p. 1576-1584.
35.Benetti, A.R., et al., Softening and elution of monomers in ethanol. Dental Materials, 2009. 25(8): p. 1007-1013.
36.Soh, M.S. and A.U.J. Yap, Influence of curing modes on crosslink density in polymer structures. Journal of Dentistry, 2004. 32(4): p. 321-326.
37.Emami, N. and K.-J.M. Soderholm, How light irradiance and curing time affect monomer conversion in light-cured resin composites. European Journal of Oral Sciences, 2003. 111(6): p. 536-542.
38.Price, R.B.T., C.A. Felix, and P. Andreou, Effects of resin composite composition and irradiation distance on the performance of curing lights. Biomaterials, 2004. 25(18): p. 4465-4477.
39.Leprince, J.G., et al., Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dental Materials, 2011. 27(2): p. 157-164.
40.Calheiros, F.C., et al., Influence of irradiant energy on degree of conversion, polymerization rate and shrinkage stress in an experimental resin composite system. Dental Materials, 2008. 24(9): p. 1164-1168.
41.Hadis, M., et al., High irradiance curing and anomalies of exposure reciprocity law in resin-based materials. Journal of Dentistry, 2011. 39(8): p. 549-557.
42.Witzel, M.F., et al., Influence of photoactivation method on conversion, mechanical properties, degradation in ethanol and contraction stress of resin-based materials. Journal of Dentistry, 2005. 33(9): p. 773-779.
43.Goncalves, F., et al., Effect of photoactivation protocol and radiant exposure on monomer conversion and flexural strength of a resin composite after water and ethanol storage. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007. 82B(1): p. 89-92.
44.Atai, M. and F. Motevasselian, Temperature rise and degree of photopolymerization conversion of nanocomposites and conventional dental composites. Clinical Oral Investigations, 2009. 13(3): p. 309-316.
45.Tseng, W.-Y., et al., Effects on microstrain and conversion of flowable resin composite using different curing modes and units. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2007. 81B(2): p. 323-329.
46.Rahiotis, C., et al., Curing efficiency of various types of light-curing units. European Journal of Oral Sciences, 2004. 112(1): p. 89-94.
47.Mortier, E., et al., Influence of Curing Mode with a LED Unit on Polymerization Contraction Kinetics and Degree of Conversion of Dental Resin-Based Materials. Journal of Dentistry for Children, 2009. 76(2): p. 149-155.
48.Ilie, N., E. Jelen, and R. Hickel, Is the soft-start polymerisation concept still relevant for modern curing units? Clinical Oral Investigations, 2011. 15(1): p. 21-29.
49.Schneider, L.F.J., et al., Cross-link density evaluation through softening tests: Effect of ethanol concentration. Dental Materials, 2008. 24(2): p. 199-203.
50.Lindberg, A., A. Peutzfeldt, and J.V. van Dijken, Curing depths of a universal hybrid and a flowable resin composite cured with quartz tungsten halogen and light‐emitting diode units. Acta Odontologica Scandinavica, 2004. 62(2): p. 97-101.
51.Lindberg, A., A. Peutzfeldt, and J.W.V. van Dijken, Effect of power density of curing unit, exposure duration, and light guide distance on composite depth of cure. Clinical Oral Investigations, 2005. 9(2): p. 71-76.
52.Besnault, C., et al., Effect of a LED versus halogen light cure polymerization on the curing characteristics of three composite resins. American journal of dentistry, 2003. 16(5): p. 323-8.
53.Chung, K.H. and E.H. Greener, Correlation between degree of conversion, filler concentration and mechanical properties of posterior composite resins. Journal of Oral Rehabilitation, 1990. 17(5): p. 487-494.
54.Rencz, A., R. Hickel, and N. Ilie, Curing efficiency of modern LED units. Clinical Oral Investigations, 2012. 16(1): p. 173-179.
55.Shin, W.S., et al., Determination of the degree of cure of dental resins using Raman and FT-Raman spectroscopy. Dental Materials, 1993. 9(5): p. 317-324.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top