跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.107) 您好!臺灣時間:2025/12/18 06:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫中民
研究生(外文):Jhong-Min Sun
論文名稱:雙頻帶通濾波器與寬截止頻帶濾波器設計
論文名稱(外文):Design of Dual-Band Bandpass Filter and Wide Stopband Filters
指導教授:湯敬文
指導教授(外文):Ching-Wen Tang
口試委員:李清和陳浩暉吳建華
口試委員(外文):Ching-Her LeeHao-Hui ChenJanne-Wha Wu
口試日期:2011-07-12
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:69
中文關鍵詞:耦合式饋入指叉式電容J反轉子馬蹄型線諧波抑制
外文關鍵詞:Coupling feedinginterdigital capacitorJ-inverterspur lineharmonic suppression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要分為兩個部份。第一部份是平面式微波雙頻帶通濾波器設計,此濾波器是採用耦合式饋入的平行耦合線與開路耦合線為電路架構。為了解決開路微帶耦合線的奇、偶模相速不相等問題,在開路微帶耦合線的兩端加入指叉式電容耦合,使其奇模的相速獲得補償。另外,在輸入與輸出埠之間加入電容性耦合,將使得通帶外傳輸零點往通帶移動而達成提高通帶的選擇性。最後將兩組設計在不同頻帶的濾波器疊接,即可達成雙頻帶的效果,而電路分析上是採用J反轉子。
第二部份提出平面式微波寬截止頻帶濾波器,架構上是結合短路傳輸線、傳輸線與開路耦合線。電路分析上同樣是採用J反轉子分析,並且適當地選擇短路傳輸線、傳輸線與開路耦合線的電氣長度來控制傳輸零點,以期達到寬截止帶的效果。最後以此寬截止頻帶濾波器為基礎又額外在饋入端使用馬蹄型線,如此將可達到諧波抑制的效果,並進而使濾波器擁有更大的截止頻寬。
上述電路均使用全波電磁模擬軟體進行模擬,實際製作電路並進行量測。經由電磁模擬與量測的結果相互比較,均具有良好的一致性。

There are two parts in this thesis. The first part is design of a planar microwave dual-band bandpass filter. The structure of this dual-band bandpass filter is composed of an open-end coupled line and two parallel coupled lines with coupling feeding. Because the unequal even-mode and odd-mode phase velocity of the open-end coupled line, the interdigital capacitors at two ends of open-end coupled line are utilized to compensate the odd-mode phase velocity. Moreover, the added capacitive coupling between the input and output ports can move two transmission zeros at the passband skirts more closely. Then, two of single passband filters with different central frequencies are cascoded to achieve a dual-passband bandpass filter, and the J-inverter has been used to analyze this filter.
In the second part, the planar microstrip bandpass filters with wide stopband are presented. The open-end coupled line, transmission line and short stub are the main structure of the wide stopband bandpass filter. By properly choosing electrical lengths of open-end coupled line, transmission line and short stub, the outband transmission zeros can be controlled to achieve a wide stopband. Moreover, the J-inverter can be used to analyze this filter. In addition, in order to increase the stopband bandwidth, two spur lines can be added into the input and output ports.
All filters in this thesis are simulated with full-wave electromagnetic simulator, and these filters have been fabricated and measured. The matched results between electromagnetic simulation and measurement can demonstrate the availability of all proposed circuits.

摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 2
第二章 濾波器設計理論 3
2.1 簡介 3
2.2 介入損耗法 3
2.2.1 巴特沃茲(Butterworth)濾波器 4
2.2.2 柴比雪夫(Chebyshev)濾波器 5
2.2.3 低通濾波器雛形 6
2.3 導納及阻抗反轉子(J- and K-inverters) 7
2.4 耦合線等效電路 13
2.5 測試夾具量測介紹 18
第三章 雙頻帶通濾波器設計 21
3.1 簡介 21
3.2 雙頻帶通濾波器之基本設計 22
3.2.1 濾波器之J反轉子合成與分析 23
3.2.2 傳輸零點產生機制 25
3.2.3 設計實例—兩組不同頻率之單頻帶通濾波器 25
3.2.4 埠間耦合的效應 32
3.3 設計實例-雙頻帶通濾波器最佳化佈局與實作 36
第四章 寬截止頻帶濾波器設計 41
4.1 簡介 41
4.2 寬截止頻帶濾波器之基本設計 42
4.2.1 濾波器之J反轉子合成與分析 43
4.2.2 傳輸零點產生機制 46
4.2.3 設計實例-寬截止頻帶濾波器設計 46
4.2.4 設計實例-寬截止頻帶濾波器最佳化佈局與實作 50
4.3 極寬截止頻帶濾波器設計 54
4.3.1 馬蹄型線之特性分析 54
4.3.2 設計實例-極寬截止頻帶濾波器最佳化佈局與實作 58
第五章 結論 63
參考文獻 65
[1]D. M. Pozar, Microwave Engineering, 2nd edition, John Wiley & Sons, 1998.
[2]J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Micorewave Applications, John Wiley & Sons, 2001.
[3]Robert E. Collin, Foundations for Microwave Engineering, McGraw Hill, 2nd edition, 1992.
[4]E.M.T. Jones, “Coupled-strip-transmission-line filters and directional couplers”, IEEE Trans. Microw. Theory Tech. vol.4, no.2, pp. 75-81, April 1956.
[5]H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” in IEEE MTT-S int. Microwave Symp. Dig., vol. 2, pp. 789-792, 1997.
[6]M. H. Weng, R. Y. Yang, Y. C. Chang, H. W. Wu, and K. Shu, “Design of a multilayered dual-band bandpass filter with transmission zeros,” Microwave and Optical Technology Letters, vol. 50, no. 8, pp. 2010 – 2013, Aug. 2008.
[7]M. H. Weng, H. W. Wu, K. Shu, J. R. Chen, R. Y. Yang, and Y. K. Su, “A novel triple-band bandpass filter using multlayer-based substrates for WiMAX,” European Microwave Conf., pp. 325 – 328, 2007.
[8]M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech. vol.28 no.12, pp. 1413-1417, Dec. 1980.
[9]M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 7, pp. 1078 – 1085, Jul. 1997.
[10]M. Sagawa, M. Makimoto, and S. Yamashita, “A design method of bandpass filters using dielectric-filled coaxial resonators,” IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 2, Feb. 1985.
[11]J. T. Kuo and H. S. Cheng, “Design of quasi-elliptic function filters with a dual-passband response,” IEEE Microw. Wireless Comp. Lett., vol. 14, no. 10, pp. 472 – 474, Oct. 2004.
[12]J. T. Kuo, T. H. Yeh, and C. C. Yeh, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1331 – 1337, Apr. 2005.
[13]C. L. Hsu, J. T. Kuo, and F. C. Hsu, “Design of loop resonator filters with a dual-passband response,” Proc. Asia-Pacific Microwave Conf , . vol. 3, 4-7 Dec. 2005.
[14]C. Y. Chen, C. Y. Hsu, and H. R. Chuang, “Design of miniature planar dual-band filter using dual-feeding structures and embedded resonators,” IEEE Microw. Wireless Comp. Lett., vol. 16, no. 12, pp. 669 – 671, Dec. 2006.
[15]S. B. Cohn, “Parallel-coupled transmission-line-resonator filters”, IRE Trans. Microwave Theory and Tech., vol. MTT-6, pp. 223-231, Apr. 1958.
[16]A. Riddle, “High performance parallel coupled microstrip filters,” IEEE Int. Microwave Symp. Digest, pp. 427-430, 1988.
[17]D. Kajfez, “Raise coupler directivity with lumped compensation,” Microwaves, pp. 64-70, Mar. 1978.
[18]S. L. March, “Phase velocity compensation in parallel-coupled microstrip line,” IEEE MTT-S Int. Microwave Symp. Digest, pp. 410-412, 1982.
[19]M. Dydyk, “Accurate design of microstrip directional couplers with capacitive compensation,” IEEE MTT-S Int. Microwave Symposium. Dig, pp. 581-584, 1990.
[20]B. Sheleg, and B. E. Wpielman, “Broadband directional couplers using microstrip with dielectric overlays,” IEEE Trans., Vol. MTT-22. pp. 1216-1220, Dec. 1974.
[21]J. L. Klein, and K. Chang, “Optimum dielectric overlay thickness for equal even- and odd-mode phase velocities in coupled microstrip circuits,” Electronics Letters, Vol. 26, pp. 274-276, 1990.
[22]A. Podell, “A high directivity microstrip coupler technique,” IEEE G-MTT Symp. Digest. Vol. 33, pp. 33-36, 1970.
[23]S. Uysal, Nonuniform Line Microstrip Directional Couplers and Filters, Artech House, Boston, 1993.
[24]S. Uysal and A. H. Aghvami, “Synthesis design and construction of ultra-wide-band nonuniform quadrature directional couplers in inhomogeneous media,” IEEE Trans. Microwave Theory and Tech., Vol. MTT-37, pp. 969-976, Jun. 1989.
[25]U. Y. Kongpop, E. J.Wollack, T. A. Doiron, J. Papapolymerou, and J. Laskar, “A planar bandpass filter design with wide stopband using double split-end stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech. vol. 54, no. 3, pp. 1237-1244, Mar. 2006.
[26]S. F. Chang, Y. H. Jeng and J. L. Chen, “Dual-band step-impedance bandpass filter for multimode wireless LANs,” Electronics Letters, vol.40, no. 1, pp.38-39, Jan. 2004.
[27]C. W. Tang, “Design of a microstrip filter using multiple capacitively loaded coupled lines,” IET Microw. Antennas Propag., vol. 1, no. 3, pp. 651-657, Jun. 2007
[28]C. H. Wu, C. H. Wang, and C. H. Chen, “Stopband-extended balanced bandpass filter using coupled stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 507-509, Jul. 2007
[29]Y. M. Chen, S. F. Chang, C. C. Chang, and T. J. Hung, “Design of stepped-impedance combline bandpass filters with symmetric insertion-loss response and wide stopband range,” IEEE Trans. Microw. Theory Tech. vol. 55, no. 10, pp. 2191-2199, Oct. 2007.
[30]C. L. Hsu and J. T. Kuo, “A two-stage SIR bandpass filter with an ultra-wide upper rejection band,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 34-36, Jan. 2007.
[31]J. T. Kuo, C. L. Hsu, and E. Shih, “Compact planar quasi-elliptic function filter with inline stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech. vol. 55, no. 8, pp. 1747-1754, Aug. 2007.
[32]J. T. Kuo and E. Shih, “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 5, pp. 1554-1559, May 2003.
[33]C. W. Tang and M. G. Chen, “Wide stopband parallel-coupled stacked SIRs bandpass filters with open-stub lines,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 666-668, Dec. 2006.
[34]C. W. Tang and Y. K. Hsu, “Design of a wide stopband microstrip bandpass filter with asymmetric resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 91-93, Feb. 2008.
[35]C. W. Tang and Y. K. Hsu, “A microstrip bandpass filter with ultra-wide stopband,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 6, pp. 1468-1472, Jun. 2008.
[36]C. H. Wang, Y. S. Lin, C. H. Wu, and C. H. Chen, “Novel microstrip coupled-line bandpass filters with shortened coupled sections for stopband extension,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 540–546, Feb. 2006.
[37]C. W. Tang and W. T. Liu, “Design of a wide stopband microstrip bandpass filter with interdigital resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 12, pp. 767-769, Dec. 2008.
[38]Y. Z. Wang and M. L. Her, “Compact microstrip bandstop filters using stepped-impedance resonator (SIR) and spur-line sections,“ IEE Proc.-Microw. Antennas Propag., Vol. 153, No. 5, Oct. 2006
[39]A. Griol, J. Marti and L. Sempere, “Microstrip multistage coupled ring bandpass filters using spur-line filters for harmonic suppression,” Electron. Lett., Vol. 37 No. 9, Apr. 2001.
[40]C. Nguyen and C. Hsieh, “Millimeter wave printed circuit spurline filters,” Microwave Symposium Digest, MTT-S Int., Vol. 83 issue 1 , pp 98 -100, May 1983.
[41]A. Torabi and K. Forooraghi, “Miniature harmonic-suppressed microstrip bandpass filter using a triple-mode stub-loaded resonator and spur lines,” IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 5, May 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top