跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 05:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊永慶
研究生(外文):Yung-Ching Yang
論文名稱:酵素催化酯化反應合成單硬脂酸甘油酯
論文名稱(外文):Synthesis of Monostearin via Lipase-catalyzed Esterification
指導教授:朱義旭
指導教授(外文):Yi-Hsu Ju
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:112
中文關鍵詞:單酸甘油酯脂解酵素甘油酯化反應硬脂酸
外文關鍵詞:MonoglyceridesLipaseGlycerolEsterificationStearic acid
相關次數:
  • 被引用被引用:2
  • 點閱點閱:1516
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
單酸甘油酯(Monoglyceride, MG)是指甘油鏈上的烴基只被一個脂肪酸酯化之甘油酯。單酸甘油酯常被廣用於食品、化妝品、或醫藥中做為添加劑或乳化劑。工業上常用來生產單酸甘油酯的方法是在高溫(220~250℃)、連續通氮下,以無機型的鹼觸媒催化反應。此製程的主要缺點為須耗費較多能源且副產物較多,且由於產物品質不佳,故必須進一步純化。而化學方法也會造成嚴重的環境污染。故如何以有效的、經濟的及低污染的方法合成單酸甘油脂將是一個重要的課題。
本研究先以脂解酵素催化硬脂酸和甘油進行反應,期望尋出一有效合成單酸甘油酯的方法。研究的變數包括:酵素種類、酵素量、基質莫耳比、溶劑種類、溶劑體積、溫度及水含量對合成單硬脂酸甘油酯的影響,後續探討酵素再使用及不同脂肪酸的影響。在下述操作條件:脂解酵素為Novozym 435,硬脂酸對甘油之莫耳比為1:4,酵素使用量為266.5 U,反應溶劑為丙酮,丙酮體積為4 mL,反應溫度為50℃,轉速為500 rpm,及添加分子篩,反應8 h後,產物甘油酯中單硬脂酸甘油酯的含量可達95.6±1.6 wt%,酯化程度約84.3±0.6 %。而經由增進酯化程度之探討後,發現可將酯化程度提升至91.48±1.2 %。
再將所獲得之甘油酯產物以低溫溶劑結晶法及酸鹼中和法純化單硬脂酸甘油酯。由低溫溶劑結晶法所獲得單硬脂酸甘油酯的純度及總產率分別為95.3±0.69 wt% 及 44.1±2.3 %。而經由酸鹼中和法所獲得之單硬脂酸甘油酯的純度及總產率分別為99.41±1.1 wt% 及 53.68±3.8 %。
Monoglyceride (MG) is one type of derivative of acylglycerol, in which one of the hydroxyl group of glycerol is esterified with fatty acid. MGs are most widely used as additives and emulsifiers in the food, cosmetic and pharmaceutical products. The conventional chemical methods to produce MG in industry are usually carried out at higher temperatures (220-250℃) under nitrogen atmosphere by employing inorganic alkaline catalysts. The major disadvantages of these processes are: it needs high energy, it produces several undesirable by products and also the quality of product is very low which needs further purification steps. Furthermore, these chemical methods produce serious environmental objections. Therefore, an efficient, economical and environmentally friendly process is utmost important to synthesis MG.
In the present investigation, it was planned to explore an efficient method for the synthesis of monoglyceride (MG) from glycerol and fatty acid (stearic acid) by the use of lipases. During this investigation various factors such as nature of lipase, amount of lipase, molar ratio of substrates, nature of solvent, volume of solvent, temperature, effects of water content, different kinds of FFA and reuse of lipase in the synthesis of MG were studied. Under the following reaction conditions: the lipase is Novozym 435, the molar between stearic acid and glycerol is 1:4, the amount of lipase is 266.5 U, the solvent is acetone, the volume of acetone is 4 mL, the reaction temperature is 50℃, the stirring speed is 500 rpm, and add molecular sieves. After 8 hr of reaction time, the content of monostearin in the acylglycerides is about 95.6±1.6 wt% with 84.3±0.6 % of degree of esterification was achieved. Further studies were carried out to enhance the degree of esterification up to 91.48±1.2 %.
Moreover, during this investigation purifications of MG by low temperature solvent crystallization and alkali neutralization were carried out. The content and overall yield of monostearin after low temperature solvent crystallization is 95.3±0.69 wt% and 44.1±2.3 %, respectively. The content and overall yields of monostearin after neutralization are 99.41±1.1 wt% and 53.68±3.83%, respectively.
中文摘要.................................................Ⅰ
英文摘要.................................................Ⅲ
目錄.....................................................V
圖索引...................................................X
表索引..................................................XVI
符號索引...............................................XVII
第一章 緒論.............................................1
1.1脂質..................................................1
1.1.1脂質之重要性........................................1
1.1.2脂質之消化與吸收....................................2
1.1.2.1脂質之消化........................................2
1.1.2.2脂質之吸收........................................5
1.2必需脂肪酸的定義與功用................................6
1.3酵素催化反應的優點...................................10
1.4酵素於有機溶劑中的催化反應...........................10
1.5酵素固定化的優點.....................................12
1.6脂解酵素.............................................12
1.7酵素催化油脂之反應...................................14
1.8乳化劑的介紹.........................................15
1.8.1乳化劑的定義.......................................15
1.8.2乳化劑的作用機制...................................16
1.8.3乳化劑的功用.......................................18
1.8.4單酸甘油酯的功用...................................19
1.8.5脂肪酸和單酸甘油酯的抑菌性.........................22
1.8.5 現今市場..........................................23
1.9研究背景及目的.......................................24
1.10內容簡介............................................25
第二章 文獻回顧........................................28
2.1酵素法合成單酸甘油酯的研究...........................28
2.1.1單酸甘油酯的背景...................................28
2.1.2傳統製程的缺點.....................................29
2.1.3乳化劑的安全性.....................................30
2.1.4 以脂解酵素催化生成單酸甘油酯......................30
2.1.5 脂解酵素催化反應生成單酸甘油酯....................31
2.1.5.1酯化反應.........................................31
2.1.5.2甘油解反應.......................................33
2.1.5.3醇解反應.........................................34
2.1.5.4水解反應.........................................35
2.1.5.5微乳化系統.......................................35
第三章 實驗藥品、設備與方法............................37
3.1實驗藥品.............................................37
3.2實驗儀器.............................................39
3.3 實驗方法............................................41
3.3.1酵素固定化.........................................41
3.3.2 Novozym 435及IM-60酵素酯化活性的測定..............41
3.3.3酯化反應...........................................42
3.3.3.1酵素篩選.........................................42
3.3.3.2其他因素對酯化反應的影響.........................43
3.3.4 增進酯化程度之方法研究............................43
3.3.5低溫結晶法.........................................44
3.3.6酸鹼中和法.........................................44
3.3.7酵素重複使用穩定性之探討...........................45
3.3.8基質脂肪酸之影響...................................46
3.3.9單花生四烯酸甘油酯中脂肪酸組成之分析...............46
3.4分析方法.............................................47
3.4.1檢量線的製作.......................................47
3.4.2酯化程度之計算.....................................48
3.4.3產率之計算.........................................48
3.4.4 重量百分比之轉換..................................49
3.4.4.1 單硬脂酸甘油酯檢量線的製作......................49
3.4.4.2 二硬脂酸甘油酯檢量線的製作......................49
3.4.4.3 三硬脂酸甘油酯檢量線的製作......................50
3.4.5 以高溫氣相層析儀(HTGC)分析單硬脂酸甘油酯的含量....50
3.4.6以薄層火燄離子分析儀(TLC-FID)分析單硬脂酸甘油酯的含量..51
3.4.7 單花生四烯酸甘油酯中脂肪酸組成之分析..............52
第四章 結果與討論......................................57
4.1產物分析.............................................57
4.2酵素之酯化活性.......................................57
4.3酵素篩選.............................................57
4.4溶劑種類對反應之影響.................................60
4.5酵素量對反應之影響...................................63
4.6溫度對反應之影響.....................................65
4.7基質莫耳比對反應之影響...............................65
4.8溶劑體積對反應之影響.................................65
4.9水含量對反應之影響...................................65
4.10攪拌對反應之影響....................................69
4.11增進酯化程度之研究..................................72
4.12 從產物中純化單硬脂酸甘油酯.........................76
4-12-1低溫溶劑結晶法....................................76
4-12-2酸鹼中和法........................................81
4.13酵素重複使用穩定性之探討............................86
4.14不同脂肪酸影響之探討................................87
4.15單花生四烯酸甘油酯中脂肪酸組成之分析...............100
4.16反應動力學的探討...................................101
第五章 結論............................................103
參考文獻...............................................106
圖索引
圖1-1 w-6系列PUFA的代謝.圖1-1 w-6系列PUFA的代謝..........9
圖1-2乳化劑在油、水中作用法.............................16
圖1-3 微膠粒的形狀......................................17
圖1-4 表面張力與乳化劑之濃度關係........................17
圖1-5 單酸甘油酯的結構及作用機制........................20
圖1-6 微胞或逆微胞狀態..................................21
圖1-7 酯化反應之產物....................................26
圖1-8 研究之流程圖......................................27
圖3-1 硬脂酸的檢量線....................................53
圖3-2 單硬脂酸甘油酯的檢量線............................54
圖3-3 二硬脂酸甘油酯的檢量線............................55
圖3-4 三硬脂酸甘油酯的檢量線............................56
圖4-1酯化反應樣品經高溫氣相層析儀分析所得之圖譜.........58
圖4-2酯化反應樣品經薄層火燄離子分析儀分析所得之圖譜.....59
圖4-3A 酵素種類對酯化程度之影響。丙酮先以分子篩除水,反應溫度=50℃,硬脂酸濃度=0.44 M,硬脂酸與甘油的莫耳比=1:2 ,丙酮體積=4 mL,酵素量=25 mg,轉速=600 rpm,無添加分子篩.........61
圖4-3B硬脂酸與甘油反應時,酵素種類對產物甘油酯中單硬脂酸甘油酯含量的影響。反應條件如圖4-3A..............................61
圖4-4A 溶劑種類對硬脂酸及甘油反應時酯化程度之影響。溶劑先以分子篩除水,酵素為Novozym 435,反應溫度=50℃,硬脂酸濃度=0.44 M,硬脂酸與甘油的莫耳比=1:2,溶劑體積=4 mL,酵素量=133.25 U,轉速=600 rpm,無添加分子篩..................................62
圖4-4B 硬脂酸與甘油反應時,溶劑種類對產物甘油酯中單硬脂酸甘油酯含量的影響。反應條件如圖4-4A............................62
圖4-5 酵素量對硬脂酸及甘油反應時酯化程度之影響。丙酮先以分子篩除水,酵素為Novozym 435,反應溫度=50 ℃,硬脂酸濃度=0.44 M,硬脂酸與甘油的莫耳比=1:2 ,丙酮體積=4 mL,轉速=600 rpm,無添加分子篩......................................................64
圖4-6 溫度對硬脂酸及甘油反應時酯化程度之影響。丙酮先以分子篩除水,酵素為Novozym 435,硬脂酸濃度=0.44 M,硬脂酸與甘油的莫耳比=1:2,酵素量=266.5 U,丙酮體積=4 mL,轉速=600 rpm,無添分子篩......................................................66
圖4-7 硬脂酸與甘油反應時,基質比對產物甘油酯中單硬脂酸甘油酯含量的影響,丙酮先以分子篩除水,酵素為Novozym 435,硬脂酸濃度=0.44 M,反應溫度=50 ℃,酵素量=266.5 U,丙酮體積=4 mL,轉速=600 rpm,無添加分子篩............................................67
圖4-8 反應體積對硬脂酸及甘油反應時酯化程度之影響。丙酮先以分子篩除水,酵素為Novozym 435,硬脂酸濃度=0.44 M,反應溫度=50 ℃,硬脂酸與甘油的莫耳比=1:4,酵素量=266.5 U,轉速=600 rpm,無添加分子篩......................................................68
圖4-9 水含量對硬脂酸及甘油反應時酯化程度之影響。丙酮先以分子篩除水,酵素為Novozym 435,硬脂酸濃度=0.44 M,反應溫度=50℃,硬脂酸與甘油的莫耳比=1:4,酵素量=266.5 U ,丙酮體積=4 mL,轉速600 rpm.....................................................70
圖4-10 攪拌對酯化程度之影響。丙酮先以分子篩除水,酵素為Novozym 435,硬脂酸濃度=0.44 M,反應溫度=50℃,硬酯酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,添加分子篩............71
圖4-11 於反應平衡後,添加溶劑對酯化程度之影響。丙酮先以分子篩除水,酵素為Novozym 435,硬脂酸濃度=0.44 M,反應溫度=50℃,硬脂酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,轉速=500 rpm,添加分子篩。反應8h後增加溶劑.......................74
圖4-12A 於反應平衡後,改變極性對酯化程度之影響。丙酮先以分子篩除水,酵素為Novozym 435,硬脂酸濃度=0.44 M,反應溫度=50℃,硬脂酸與甘油的莫耳比=1:4,酵素量=266.5 U ,丙酮體積=4 mL,轉速=500 rpm,添加分子篩,反應8 h後改變極性......................75
圖4-12B 於反應平衡後,改變極性對產物甘油酯中單硬脂酸甘油酯含量的影響。反應條件如圖4-14A.................................75
圖4-13 以硬脂酸及甘油反應生產單硬脂酸甘油酯之流程圖....80
圖4-14 單硬脂酸甘油酯之 TLC-FID 鑑定圖.................84
圖4-15 單硬脂酸甘油酯之 HTGC 鑑定圖....................85
圖4-16 酵素再使用穩定性之探討..........................86
圖4-17 辛酸(C8:0)與甘油進行酯化反應之時間變化圖。丙酮先以分子篩除水,酵素為Novozym 435,辛酸濃度=0.44 M,反應溫度=50℃,辛酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,轉速=500 rpm,添加分子篩......................................................89
圖4-18 肉豆蔻酸(C14:0)與甘油進行酯化反應之時間變化圖。丙酮先以分子篩除水,酵素為Novozym 435,肉豆蔻酸濃度=0.44 M,反應溫度=50℃,肉豆蔻酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,轉速=500 rpm,添加分子篩............................90
圖4-19 棕櫚酸(C16:0)與甘油進行酯化反應之時間變化圖。丙酮先以分子篩除水,酵素為Novozym 435,棕櫚酸濃度=0.44 M,反應溫度=50℃,棕櫚酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,轉速=500 rpm,添加分子篩....................................91
圖4-20 花生酸(C20:0)與甘油進行酯化反應之時間變化圖。丙酮先以分子篩除水,酵素為Novozym 435,花生酸濃度=0.44 M,反應溫度=50℃,花生酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,轉速=500 rpm,添加分子篩....................................92
圖4-21 山酸(C22:0)與甘油進行酯化反應之時間變化圖。丙酮先以分子篩除水,酵素為Novozym 435,山酸濃度=0.44 M,反應溫度=50℃,山酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,轉速=500 rpm,添加分子篩.........................................93
圖4-22 油酸(C18:1)與甘油進行酯化反應之時間變化圖。丙酮先以分子篩除水,酵素為Novozym 435,油酸濃度=0.44 M,反應溫度=50℃,油酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,轉速=500 rpm,添加分子篩.........................................94
圖4-23 亞麻油酸(C18:2)與甘油進行酯化反應之時間變化圖。丙酮先以分子篩除水,酵素為Novozym 435,亞麻油酸濃度=0.44 M,反應溫度=50℃,亞麻油酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,轉速=500 rpm,添加分子篩............................95
圖4-24 γ-亞麻酯酸(C18:3)與甘油進行酯化反應之時間變化圖。丙酮先以分子篩除水,酵素為Novozym 435,γ-亞麻酯酸濃度=0.44 M,反應溫度=50℃,γ-亞麻酯酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,轉速=500 rpm,添加分子篩.......................96
圖4-25 花生四烯酸(C20:4)與甘油進行酯化反應之時間變化圖。丙酮先以分子篩除水,酵素為Novozym 435,花生四烯酸濃度=0.44 M,反應溫度=50℃,花生四烯酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,轉速=500 rpm,添加分子篩.........................97
圖4-26 二十二碳六烯酸(C22:6)與甘油進行酯化反應之時間變化圖。丙酮先以分子篩除水,酵素為Novozym 435,二十二碳六烯酸濃度=0.44 M,反應溫度=50 ℃,二十二碳六烯酸與甘油的莫耳比=1:4,酵素量=266.5 U,丙酮體積=4 mL,轉速=500 rpm,添加分子篩..............98
圖4-27 硬脂酸與甘油酯化反應之Lineweaver-Burk圖。丙酮先以分子篩除水,酵素為Novozym 435,反應溫度=50℃,硬脂酸與甘油的莫耳比=1:4,丙酮體積=4 mL,酵素量=266.5 U,轉速=500 rpm,添加分子篩,反應時間=10 min............................................102
表索引
表1-1 乳化劑的功用與用途................................18
表1-2 單酸甘油酯的功用與用途............................21
表2-1 蒸餾級單酸甘油酯中之甘油酯組成....................28
表2-2 食品乳化劑對於人體每天可被予許的攝取量............30
表4-1 不同溶劑對純化單硬脂酸甘油酯之影響................77
表4-2 固定溶劑對基質比例下,操作溫度對單硬脂酸甘油酯之純化影響
........................................................78
表4-3 於固定溫度下,基質對溶劑比例對純化單硬脂酸甘油酯之影 響......................................................78
表4-4 不同鹼類對於脂肪酸去除之效果......................82
表4-5攪拌時間對於脂肪酸去除效果之影響...................83
表4-6 以不同脂肪酸探討反應適用性之整理..................87
表4-7 增進酯化程度探討之整理............................88
表4-8 以酸鹼中和法純化單酸甘油酯之整理..................99
表4-9 單花生四烯酸甘油酯中脂肪酸組成之分析.............101
符號索引
C8:0:Caprylic acid,辛酸
C14:0:Myristic acid,肉豆蔻酸
C16:0:Palmitic acid,棕櫚酸
C18:0:Stearic acid,硬脂酸
C18:1:Oleic acid,油酸
C18:2:Linoleic acid, C18:2 n6,亞麻油酸
C18:3 n3:a-Linolenic acid (ALA),a-亞麻脂酸
18:3 n6:g-Linolenic acid (GLA),g-亞麻脂酸
C20:0:cis-11-Eicosenoic acid,花生酸
C22:0:Docosanoic acid ,山酸
C22:6 n3 :All-cis-4,7,10,13,16,19-docosahexaenoic acid (DHA),二十二碳六烯酸
AA:Arachidonic Acid, C20:4 n6,花生四烯酸
DG:Diglyceride,二酸甘油酯
DHLA:Dihomo-g-linolenic Acid, C20:3 n6,雙同-γ-亞麻脂酸
FFA:Free Fatty Acid,自由態脂肪酸
MG:Monoglyceride,單酸甘油酯
ND:Not Detected
PUFA:Polyunsaturated Fatty Acid,多元不飽和脂肪酸
TG:Triglyceride,三酸甘油酯
Addis, P. B., and J. Romans, “The omega-3 fatty acid story,” Reciprocal Meat Conference Proceedings, 42, 41-48 (1989).
Aguiar, L. M. G., and R. M. Vargas, “Prepration of monoglycerides by guanidine-catalyzed processes,” J. Am. Oil Chem. Soc., 75, 755-756 (1998).
Akeda, Y., K. Shibata, X. Ping, T. Tanaka, and M. Taniguchi, “AKD-2a, b, c and d, new antibiotics from Streptomyces sp. ocu-42815 taxonomy, fermentation, isolation, structure elucidation and biological activity,” J. Antibiotics., 48, 363-368 (1994).
Berger, M. and M. P. Schneider, “Enzymatic esterification of glycerol Ⅱ. lipase-catalyzed synthesis of regioisomerically pure 1(3)-rac-monoacylglyceride,” J. Am. Oil Chem. Soc., 69, 961-965 (1992).
Boswinkel, G., J. T. P. Derksen, K. V. Riet, and F. P. Cuperus, “Kinetic of acyl migration in monoglycerides and depedence on acyl chainlength,” J. Am. Oil Chem. Soc., 73, 707-711 (1996).
Boyle, E., and J. B. German, “Monoglyceride in membrance systems,” Crit. Rev. Food Sci. Nutr. In press (1996).
Brink, L. E. S., K. Ch. A. M. Luyben, and K. V. Riet, “Biocatalysis in organic solvents,” Enzyme Microb. Technol., 10, 736-743 (1988).
British Nutrition Foundation., “Task force on unsaturated fatty acids,” London, Chapman and Hall (1992).
Castillo, E., V. Dossat, J. Marty, S. Condoret, and D. Combes, “The role of silica gel in lipase-catalyzed esterification reaction of high-polar substrates,” J. Am. Oil Chem. Soc., 74, 77-85 (1997).
Castilo, E., D. Valerie, C. Didier, and A. Marty, “Efficient lipase-catalyzed production of tailor-made emulsifiers using solvent engineering coupled to extractive processing,” J. Am. Oil Chem. Soc., 75, 309-313 (1998).
Choudhury, R. B. R., “The prepration and purification of monoglycerides I. glycerolysis of oils,” J. Am. Oil Chem. Soc., 37, 483 (1960).
Christie, W. W., and M. L. Hunter, “Separation of neutral lipids on chromarods,” J. of Chromatography., 171, 517-518 (1979).
Coteron, A., M. Martinez, and J. Aracil, “Reactions of olive and glycerol over immobilized lipases,” J. Am. Oil Chem. Soc., 75, 657-660 (1998).
De, B. K., and D. K. Bhattacharyya, “Deacidification of high-acid rice bran oil by reesterification with monoglyceride,” J. Am. Oil Chem. Soc., 76, 1243-1246 (1999).
Dordick, J. D., “Designing enzymes for use in organic solvents,” Biotechnol. Prog., 8, 259-267(1991).
Dordick, J. S., “An introduction to industrial biocatalysis,” J. S. Dordick (ed.), Biocatalysis for Industry, Plenum Press, New York, 1-19 (1992).
Dyerbeg, J., H. O. Bang, E. Stoffersen, S. Moncada, and J. R. Vane, “Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis,” Lancet., 2, 117-119 (1978).
Ergan, F., M. Trani, and G. Andre, “Production of glycerieds from glycerol and fatty acid by immobilized lipases in non-aqueous media,” Biotechnol. Bioeng., 35, 195-200 (1990).
Flack, E. A., and N. Krog, “The function and application of some emulsifying agents common use in Europe,” Food Trade Rev., 40, 27-33(1970).
Gancet, C., “Catalysis by Rhizopus arrhizus mycelial lipase,” Ann N Y Acad Sci., 613, 600-604 (1990).
Gupta, M. N., “Enzyme function in organic solvents,” Eur. J. Biochem., 203, 25-32 (1992).
Haraldsson, G. G., B. Kristinsson, R. Sigurdardottir, G. G. Gudmundsson, and H. Breivik, “The preparation of concentrates of eicosapentaenoic acid and docosahexaenoic acid by lipase-catalyzed transesterification of fish oil with ethanol,”J. Am. Oil Chem. Soc., 74, 1419-1424(1997).
Harris, W. S., “Fish oil and plasma lipid and lipoprotein metabolism in humans: critical review,” J. Lipid Res., 30, 785-789 (1989).
Hoet, C. C., and M. C. Chow, “The effect of the refining process on the interfacial properties of palm oil,” J. Am. Oil Chem. Soc., 77, 191-199 (2000).
Holmberg, K., and E. Osterberg, “Enzymatic preparation of monoglycerides in microemulsion,” J. Am. Oil Chem. Soc., 65, 1544-1548 (1998).
Hoq, M. M., T. Yamane, and S. Shimizu, “Continuous synthesis of glycerides by lipase in a microporous membrane bioreactor,” J. Am. Oil Chem. Soc., 61, 776-781 (1984).
Hu, F. B., M. J. Stampfer, J. E. Manson, E. B. Rimm, A. Wolk, G. A. Colditz, and C. H. Hennekens, “Dietary intake of a-linolenic acid and risk of fatal ischemic heart disease among women,” Am. J. Clin. Nutr., 69, 890-897 (1999).
Janssen, A. E. M., A. V. D. Padt, H. M. V. Sonsbeek, and K. V. Riet, “The effect of organic solvent on the equilibrium position of enzymatic acylglycerol synthesis,” Biotechnol. Bioeng., 41, 95-103 (1993).
Jose, A. A., S. G. Hugo, and G. H. Charles, “Continous enzymatic esterification of glycerol with (poly) unsaturated fatty acids in a packed-bed reactor,” Biotechnol. Bioeng., 73, 1521-1525 (2000).
Kinsella, J. E., “Food lipids and fatty acid: importance of food quality, nutrition, and health,” Food Technol., 42, 124-145 (1988).
Klibanov, A. M., “Enzymes that work in organic solvents,” Chemtech., 16, 354-359 (1986).
Klibanov, A. M., “Enzyme thermoinactivation in anhydrous organic solvents,” Biotechnol. Bioeng., 37, 843-853 (1991).
Kwon, D. Y., H. N. Song, and S. H. Yoon, “Synthesis of medium-chain glycerides by lipase in organic solvent,” J. Am. Oil Chem. Soc., 73, 1521-1525 (1996).
Lauridsen, J. B., “Food surfactants, their structure and polymorphism,” J. Am. Oil Chem. Soc., Short Course on Physical Chemistry of Fats and Oils, Hawaii, May 11-14(1986).
Macrae, A. R., “Lipase-catalyzed interesterification of oils and fats,” J. Am. Oil Chem. Soc., 60, 291-294 (1983).
Malcata, F. X., H. R. Reyes, H. S. Garcia, C. G. Hill, and C. H. Amundson, “Kinetics and mechanisms of reaction catalyzed by immobilized lipases,” Enzyme Microb. Technol., 14, 426-446 (1992).
McNeill, G. P., S. Shimizu, and T. Yamane, “Solid phase enzymatic glycerolysis of beef tallow resulting in a high yield of monoglyceride,” J. Am. Oil Chem. Soc., 67, 779-783 (1990).
McNeill, G. P and T. Yamane, “Further improvements in the yield of monoglycerides during enzymatic glycerides of fats and oils,” J. Am. Oil Chem. Soc., 68, 6-10 (1991).
Miller, D., C. Leong, and P. Smith, “Effect of feeding and withdrawal of menhaden oil on the ω3 and ω6 fatty acid content of broiler tissues,” J. Food Sci., 34, 136-142 (1969).
Millqvist, A., P. Adlercreutz, and B. Mattiasson, “Lipase-catalyzed alcoholysis of triglycerides for the preparation of 2-monoglycerides,” Enzyme Micro. Techno., 16, 1042-1047(1994).
Mittelbach. M., “Lipase catalyzed alcoholysis of sunflower oil,” J. Am. Oil Chem. Soc., 67, 168-170 (1990).
Mosbach, K., “Molecular imprinting,” Trends in Bio. Sci., 19, 9-14 (1994).
Neuringer, M., G. J. Anderson, and W. E. Connor, “The essentiality of n-3 fatty acids for the development and function of the retina and brain,” Annu. Rev. Nutr., 8, 517-541 (1988).
Noureddini, H., and S. E. Harmeier, “Enzymatic Glycerolysis of Soybean Oil,” J. Am. Oil Chem. Soc., 75:1359-1365 (1998).
Omura, S., A. Nakagawa, N. Fukamachi, K. Otoguro, and B. Kobayashi, “Aggreceride, a new platelet aggregation inhibitor from Stretomyces sp.,” J. Antibiotics., 39, 1180-1181 (1986).
Palmer, T., “Understanding enzyme,” 4th edition., Pentice Hall Ellis Horwood Book Co. Ltd., Maylands Avenue, pp.113-114 (1995).
Ping, X., Y. Akeda, K. I. Fujita, T. Tanaka, and M. Taniguchi, “The model of action of akd-2c, and antifungal antibiotic from Streptomyces sp. ocu-42815,” J. Antibiotics., 51, 852-856 (1998).
Plou, F.J., M. Calvo, A. Ballesteros, and E. Paster, “High-yield production of mono- and di-oleylglyceride by lipase-catalyzed hydrolysis of triolein,” Enzyme Micro. Techno., 18, 66-71 (1996).
Rupley, Y. A., and G. Careri, “Protein hydration and function,” Advances in Protein Chemistry, 41, 37-172 (1991).
Simopoulos, A. P., “Omega-3 fatty acids in health and disease and in growth and development,” J. Am. Clin. Nutr., 54, 438-463 (1991).
Sonntag, N. O. V., “Glycerolysis of fats and methyl ester-status, review and critique,” J. Am. Oil Chem. Soc., 795A-802A (1982).
Takaharu, S., Y. Tsutoshi, M. Akira, U. Midori, and T. Atsushi, “Purification and characterization of a monoacylglycerol lipase from Pseudomanas sp. lp7315,” Bioci. Bioeng., 91, 27-32 (2001).
Van der Padt, A., J. T. F. Keurentjes, J. J. W. Sewalt, E. M. Van-Dam, and L. J. Van Dorp, “Enzynamictic synthesis of monoglyceride in a membrance bioreactor with an in-line adsorption column,” J. Am. Oil Chem. Soc., 69, 748-754 (1992).
Willis, W. M., R. W. Lencki, and A. G. Marangoni, “Lipid modification strategies in the production of nutritionally functional fats and oils,” Crit. Rev. Food Sci. Nutr., 38, 639-674 (1998).
陳國誠,微生物酵素工程學,藝軒圖書公司 (1989).
翁鵬傑、彭俊明、陳玉燕、許碧蘭、黃東裕、盧虹佑,哈伯氏生物化學(上冊),第277-286頁,台北,藝軒圖書出版社 (1993).
陳自珍,食品添加物,笫258頁,文源圖書出版社 (1997).
歐錦綢,「食品乳化劑的特性、組成、生產及在麵包製造上的應用」,食品工業,第十四期,第18-25頁 (1998).
王果行,普通營養學,笫44頁,匯華圖書出版社 (1997).
賴永光,「乳化劑第16食品添加物」,食品資訊,第二期,第46-55頁 (1995).
黃芳正, 1995, 脂解酵素在有機溶劑中水解棕櫚核仁軟酯之研究, 台灣科技大學化學工程研究所博士論文.
陳拓成, 2001, 多元不飽和脂肪酸之濃縮及結構性脂質之合成, 台灣科技大學化學工程研究所博士論文.
徐雅蕾, 2001, 以單細胞油經三階段合成結構脂質, 台灣科技大學化學工程研究所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top