跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/03 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅聖全
研究生(外文):Shen-Chuan Lo
論文名稱:以先進影像能譜電鏡技術:研究銅金屬化製程中低介電常數材料之介電性質與熱穩定性
論文名稱(外文):Advanced Image-Spectrum Technique: The Investigation of Dielectric Property and Thermal Stability of Low-k Material in Cu Metallization
指導教授:開執中陳福榮陳福榮引用關係
指導教授(外文):Ji-Jung KaiFu-Rong Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:156
中文關鍵詞:影像能譜技術低介電常數材料快速傅立葉轉換內插法最大熵解卷法能隙分佈圖介電常數分佈圖
外文關鍵詞:image-spectrum techniquelow-k materialsfast Fourier transform interpolationmaximum entropy deconvolutionband gap mapdielectric constant map
相關次數:
  • 被引用被引用:6
  • 點閱點閱:516
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要是發展先進之電子顯微鏡分析技術:影像能譜技術( image-spectrum technique ),研究銅金屬化製程中黑鑽石低介電常數材料的介電性質與熱穩定性。
在本研究中,我們發展新的訊號處理方法來改進影像能譜之定量分析技術。快速傅立葉轉換內插法與最大熵解卷法之建立,分別可以成功地解決低電子能量損失區域之影像能譜在定量分析上所遇到取樣不足與能量解析度損失的兩大問題。藉由新的訊息處理技術,我們所發展的先進影像能譜技術可以擷取二維空間奈米區域之材料基本影像分佈圖如:介電常數分佈圖( dielectric constant map )與能隙分佈圖( band gap map )。
本研究以設計在銅金屬化製程( Cu Metallization )中之黑鑽石( Black DiamondTM )低介電材料作為主要研究用之樣品。因為使用Kramers-Kronig來分析介電函數對試片厚度相當敏感。因此我們藉由已知介電常數材料區域的試片厚度趨勢來外插得到未知成分之介電材料區域的厚度,再結合Kramers-Kronig之分析方法決定出其介電常數。實驗結果顯示未退火前之黑鑽石低介電材料試片之介電常數量測值為2.7±0.3,相當接近參考值(2.5~2.8)。
本研究所發展之影像能譜技術分別可以應用於低電子能量損失區域與高能量電子損失區域之材料能隙、介電函數與分子鍵結訊息之獲得。此技術已成功地擷取低電子能量損失區域之訊息,然而在高電子能量損失區域之訊息擷取還需克服下列問題:(1)能量飄移問題( energy drift )、(2)空間(試片)飄移問題[ spatial ( specimen ) drift ]、(3)過濾影像欠焦值( defocus )與(4).記錄強度之穩定性( intensity reliability ),方能擷取正確之影像能譜。
最後,本研究將多層膜試片置於真空度8×10-6 torr、分別經過250℃、350℃、450℃溫度的高真空退火爐下退火一小時,以探討熱效應對黑鑽石低介電材料之介電性質的影響。研究結果顯示退火450℃後的黑鑽石低介電材料,其介電常數為由2.7增加至3.5。我們認為退火處理會使黑鑽石低介電材料之分子鍵結型態改變,且其介電函數行為與二氧化矽相當近似。黑鑽石介電常數材料之介電常數會隨著退火溫度上升而增加的原因在於原來降低介電常數Si-CH3鍵,會隨著退火溫度增加而減少或是-CH3中的C-H鍵被高溫破壞。
本研究建立之先進訊號處理技術:快速傅立葉轉換內插法與最大熵解卷法,使得影像能譜技術能夠更快速且精確地擷取奈米尺度之二維材料性質顯微分佈圖:如介電常數分佈圖與材料能隙分佈圖。本研究建立之介電常數量測法可以解決結構式樣品中低介電常數材料之介電常數量測。透過先進影像能譜技術之發展,不但建立性質顯微影像之擷取方法,同時亦將傳統之能量損失技術與影像能譜技術結合,以瞭解退火效應對低介電常數材料黑鑽石之介電性質與分子結構之影響。
In this thesis, we developed an advanced microscopy technique:image-spectrum technique to study the dielectric property and thermal stability of Black DiamondTM dielectric materials for copper metallization.
In my dissertation, I used newly developed signal processing methods to improve the capability of quantitative analysis of image spectrum. FFT interpolation and maximum entropy deconvolution were successfully used to solve the two problems:under-sampling and loss of energy resolution in image-spectrum technique, respectively. Based on novel signal-processing technique, the image-spectrum technique can extract two-dimensional property image from nanometer area of materials such as dielectric constant map and bang gap map.
The novel Black DiamondTM a low-k material designed for copper metallization was used as a demo example. Since the analysis of the dielectric function is sensitive to the local thickness of the specimen using Kramers-Kronig analysis, we also developed a new method to quantitatively determine thickness of a wedge sample for low-k materials. We have determined the thickness of the Black DiamondTM low-k material using extrapolated thickness method from the materials of known dielectric constant. The experimentally determined dielectric constant of Black DiamondTM is 2.7±0.3 and very close to the reference value (2.5~2.8).
The image-spectrum technique can extract basic materials properties from low-loss and high-loss electron energy region respectively such as band gap、dielectric function and bonding structure. This technique has been successfully extracted materials properties from low-loss electron energy region. However the application of this technique in high-loss region application has several difficulties such as:(1).energy drift (2).spatial( specimen ) drift (3).defocus of energy filtered image sand (4).recorded intensity stability must be overcome.
Finally, the dielectric multiplayer was annealed at 250℃、350℃、450℃ respectively, in furnace vacuum with 8×10-6 torr for 1 hour to study the thermal effect on dielectric property of Black DiamondTM. The dielectric constant of Black DiamondTM increased as the annealing temperature increased. After annealed at 450℃, the dielectric constant of Black DiamondTM low-k material was increased from 2.7 to 3.5. We concluded that the bonding structure of the Black DiamondTM low-k material has been changed after thermal process and the dielectric property of Black DiamondTM shifted that of SiO2. The reason of dielectric constant of Black DiamondTM increased is the decreased of Si-CH3 bonding or C-H bonding broke during high temperature annealed.
The development of new signal processing method:FFT interpolation and MEM deconvolution can rapidly and accurately extract two-dimensional property image such as dielectric constant map and band gap map. The new wedge dielectric constant measurement can measure the dielectric constant of dielectric materials in pattern sample. Advanced image-spectrum technique can combine with conventional EELS analysis, therefore the dielectric property and thermal stability of Black DiamondTM dielectric materials for copper metallization can be realized.
目錄
頁次
目錄……………………………………………………………………I
表目錄…………………………………………………………………IV
圖目錄…………………………………………………………………V
一、前言………………………………………………………………1
1.1 研究背景…………………………………………………………1
1.2 研究動機與目的…………………………………………………2
二、文獻回顧…………………………………………………………4
2.1 能量過濾電鏡技術………………………………………………4
2.1.1 概論………………………………………………….……4
2.1.2 影像能譜技術之發展演進…………………….…………6
2.1.3 影像能譜技術相關應用分析技術之改進……………….10
2.2 材料之元素定量分析原理………………………………………11
2.2.1貝斯理論(Bethe Theory)…………….……………………..11
2.2.2介電函數公式化(Dielectric Formulation)……………13
2.2.3固態效應(Solid-State Effects)與貝斯總和規(Bethe Sum Rule)……………………………………................….16
2.3 銅金屬化製程技術與低介電材料之發展………………………18
2.3.1 RC延遲的規則…………………………………………….21
2.3.2低介電常數材料概論……………………………...…….24
2.3.2-1低介電材料簡介與其特性要求………..………......24
2.3.2-2低介電材料種類………………………..………......25
三、影像能譜技術發展與分析方法…………………………...….33
3.1快速傅立葉轉換內插法…………………………...….………33
3.2最大熵解卷法…………...………………….…………...……35
3.3能量損失譜中多重散射效應之移除………………………….…38
3.3.1傅立葉-對數解卷法……….…………………………….39
3.3.2傅立葉-比例解卷法……….…………………….…………41
3.4影像能譜技術在低能量損失區域( low-loss region )之應用…42
3.4.1試片厚度分析…….……………….………………………..42
3.4.2介電常數量測……..………………………………………..45
3.4.3介電函數量測……..………………………………………..47
3.4.4能帶間隙量測……..……………………………...……….47
3.5能譜影像技術在核電子能量損失( core-loss region )區域之應用
..……..……………………………..……51
四、實驗方法……………………………………………………...…55
4.1實驗樣品製備…………………………………………………….55
4.2電鏡試片製備技術…………………………………………….…56
4.3能量過濾影像之理論空間解析度……………………………….57
4.3.1影響能量過濾影像理論空間解析度的因素………………57
4.3.2 CCD最小記錄元素與電鏡放大倍率之關係………..……61
4.4能量過濾影像之實驗參數與影像能譜紀錄流程…………..61
4.4.1 低能量損失區域之影像能譜實驗參數…...………………63
4.4.2 高能量損失區域之影像能譜實驗參數…...………………65
4.5電子能量損失譜之實驗參數……………...……………………..66
五、實驗結果與討論…………………………………………………..68
5.1影像能譜訊號校正結果…...……………………………………..68
5.2 低介電常數材料黑鑽石之介電函數與能隙量測……………....72
5.2.1 黑鑽石之介電常數量測實驗結果……..………………….72
5.2.2 能帶間隙(energy band gap)之量測…….…….…………86
5.2.3 介電材料之介電函數量測………………..………...……90
5.3退火效應對黑鑽石之影響…………………………….…………..93
5.3.1高分辨穿透顯微影像(High-resolution TEM image)觀察
………………………………………………………….....93
5.3.2介電常數之變化……………………………………………..96
5.3.3介電函數之變化…………………….………………..…….99
5.4 原子鍵結情形:核損失峰之比較………………………….……103
5.4.1電子能量損失譜之核損失峰實驗結果與討論………..….103
5.4.2影像能譜之核損失峰實驗結果與討論……….………….106
5.4.3影像能譜與能量損失譜之比較…………………………..129
5.5 退火效應對黑鑽石分子結構之影響…………………………….133
六、結論………………………………………………………………137
七、未來研究方向與建議……………………………………………139
文獻參考………………………………………………………………141
附錄……………………………………………………………………155
表目錄
表2-1 半導體製程技術趨勢與低介電常數材料的引進…………………20
表2-2 矽基類與碳基類低介電常數材料特性比較………………………26
表2-3 黑鑽石低介電常數材料特性表……………………………………31
表4-1 低能量損失區域:影像能譜擷取之實驗參數……………………63
表4-2 矽核損失峰:影像能譜擷取之實驗參數表………………….….65
表4-3 氧核損失峰:影像能譜擷取之實驗參數表………………………66
表4-4 電子能量損失譜之實驗參數表……………………………………67
表5-1 各介電層介電常數之理論值與實驗值之比較……………………83
表5-2 各層材料平均自由徑之理論值與實驗值比較……………………85
表5-3 各種介電材料之能隙擬合參數表…………………………………90
表5-4 各層材料之介電函數第一特徵峰實驗值與文獻值比較表………93
表5-5 不同退火溫度下,各介電層之介電常數表………………………99
圖目錄
圖2-1 影像能譜技術與能譜影像技術,訊息擷取方式比較示意圖。
如圖(a)所示能量過濾電鏡所擷取的是二維影像訊息、圖(b)所
示為掃瞄穿透式電鏡所擷取的是一維空間訊息…….…………….6
圖2-2 影像能譜(Image-Spectrum)資料擷取示意圖………………………8
圖2-3 多層金屬化連線示意圖…………………………………………….19
圖2-4 內金屬連線(interconnect)系統示圖………………………….21
圖2-5 內連線(interconnect)延遲、(intrinsic gate)本質閘延遲與IC元件尺寸關係圖……………………………….…………………………...22
圖2-6 內連線導線電容對IC元件尺寸關係圖…………………..…….…23
圖2-7 各世代所需之低介電常數材料與其介電常數對應圖…………..…26
圖2-8 摻雜氟矽酸鹽玻璃(FSG)之分子式與分子結構示意圖………..….27
圖2-9 Hydrogensilsesquioxane (HSQ)之分子式與分子結構示意圖
……....................................................29
圖2-10 Methylsilsesquioane (MSQ)之分子結構示意圖…………………..............................................29
圖2-11黑鑽石(Black Diamond)之分子結構示意圖……………………....31
圖2-12 SEM橫截面顯微影像圖:此為130nm製程,由九層之銅金屬與黑鑽石(Black Diamond)介電層所組成………………………….............32
圖3-1 因能量光闌寬度效應而使影像能譜之能量解析度損失。(a).實驗時所萃取之影像能譜為(b).能量光闌寬度與(c).真實能譜之卷積結果…………………………………………………………………..........36
圖3-2 三種非彈散射強度趨近法。虛線為線性內插、點線為多項式內插、實線為直接擷取最低點法…………………………………….….........44
圖3-3 不同型態之雙曲線能帶間,電子躍遷示意圖與電子能量損失譜中之曲線分佈(a).直接能隙(b).間接能隙…………………………..........50
圖3-4 二氧化矽之(a).主要的軌域特徵與(b).矽L2,3能量損失近刃結構之關係……………………………………………………………….........53
圖3-5 非晶二氧化矽之氧K特徵峰之能量損失譜。A峰值為538eV、B峰值為560eV……………………………………………………..54
圖4-1 銅製程雙層鑲嵌圖案結構之橫截面TEM顯微影像圖…………..55
圖4-2 理論空間解析度與收集半角關係圖。儀器條件:電子能量:200keV、物鏡色像差係數:1.4mm、能量損失:50eV…………..…..59
圖4-3 理論空間解析度與能量關係圖。儀器條件:電子能量:200keV、物鏡色像差係數:1.4mm、收集半角:10mrad………………….60
圖4-4影像能譜(Image spectrum)組成圖:一系列ESI影像,由71張能量範圍由-10至60eV、能量間距1eV的不同能量損失影像所組成
……………………………………………………………………….62
圖4-5實驗分析流程圖…………………………………………….……….64
圖5-1 快速傅立葉轉換內插法與多項式、線性內插法之比較圖。(a).零損失峰尾部區域、(b).電漿峰區域。………………………………..69
圖5-2 快速傅立葉轉換內插法在原始數據點與點之間差距過大時,所產生之振盪現象。……………………………………….…………70
圖5-3(a).實線為經過快速傅立葉轉換內插的能譜、虛線為再經過最大熵解卷後的能譜。圖中可以清楚看出能量解析度由1.6eV增進至1.0eV。圖(b)為經過快速傅立葉轉換內插與最大熵解卷處理後的能譜與EELS能譜比較,兩能譜相當接近…..…………………71
圖5-4 BD/Si3N4/SiO2/Si-substrate多層膜結構之零損失能量過濾影像…72
圖5-5(a) 一系列ESI (Electron Spectroscopic Imaging)影像:由-10eV至1eV………………………………………………………………..73
圖5-5(b) 一系列ESI (Electron Spectroscopic Imaging)影像:由2eV至13eV...……………………………………………………………..74
圖5-5(c) 一系列ESI (Electron Spectroscopic Imaging)影像:由14eV至25eV……...……………………………………………………….75
圖5-5(d) 一系列ESI (Electron Spectroscopic Imaging)影像:由26eV至37eV………………………………………………………………76
圖5-5(e) 一系列ESI (Electron Spectroscopic Imaging)影像:由38eV至49eV………………………………………………………………77
圖5-5(f) 一系列ESI (Electron Spectroscopic Imaging)影像:由50eV至60eV………………………………………………………………78
圖5-6 (a). t/ 分佈圖 (b).圖(a)中黃色區域t/ 分佈曲線圖…….…….….80
圖5-7 Si3N4/SiO2/Si-substrate多層膜區域之試片厚度曲線圖………..….81
圖5-8 BD/Si3N4/SiO2/Si-substrate多層膜區域之試片厚度曲線圖…….…81
圖5-9 各介電材質之介電常數分佈圖……………………………………82
圖 5-10 以Kramers-Kronig sum rule方法量測之試片厚度分佈圖……..84
圖 5-11 各層材料平均自由徑之理論值與實驗值比較圖………..……...85
圖5-12 (a)黑鑽石、(b)二氧化矽,經過零損失峰去除並使用雙曲線能帶(parabolic band)結構函數擬合後與原始曲線、經過傅立葉-對數解卷法處理後的曲線比較圖..…………………………………..87
圖5-12 (c)氮化矽、(d)單晶矽,經過零損失峰去除並使用雙曲線能帶(parabolic band)結構函數擬合後與原始曲線、經過傅立葉-對數解卷法處理後的曲線比較圖…………………………………....88
圖5-13各介電層之能隙分佈圖( band gap map )………………………….89
圖5-14 圖5-4中A至B區域之低能量損失區域中之電漿峰分佈情形..91
圖5-15 (a)與(b)分別為四維空間實部與虛部的介電性質影像分佈圖…..92
圖5-16(a) 未退火黑鑽石之高分辨穿透顯微影像 (×600k倍)………….94
圖5-16(b) 退火250℃:黑鑽石之高分辨穿透顯微影像 (×600k倍)…..94
圖5-16(c) 退火350℃:黑鑽石之高分辨穿透顯微影像 (×600k倍)…..95
圖5-16(d) 退火450℃:黑鑽石之高分辨穿透顯微影像 (×600k倍)…..95
圖5-17(a) 退火250℃後,各介電層之介電常數分佈圖…………………97
圖5-17(b) 退火350℃後,各介電層之介電常數分佈圖…………………97
圖5-17(c) 退火450℃後,各介電層之介電常數分佈圖………….……..98
圖5-18 各層介電材質之介電常數與退火溫度關係圖……………..…....98
圖5-19(a) 退火前黑鑽石低介電材料、二氧化矽材料與不同退火溫度之黑鑽石介電函數之實部比較圖…………...………………...101
圖5-19(b) 退火前黑鑽石低介電材料、二氧化矽材料與不同退火溫度之黑鑽石介電函數之虛部比較圖………...…………………...101
圖5-20 二氧化矽與黑鑽石之分子鍵結比較圖…………..……………..102
圖5-21(a) 退火前後黑鑽石之矽L系列之核損失峰比較圖(以未退火二氧化矽作為比較標準)……………………………………..104
圖5-21(b) 退火前後黑鑽石之氧K系列之核損失峰比較圖(以未退火二氧化矽作為比較標準)……………………………………..104
圖5-21(c) 退火前後黑鑽石之碳K系列之核損失峰比較圖(以碳化矽作為比較標準)………………………………………………..105
圖5-22(a) 未退火試片之一系列ESI (Electron Spectroscopic Imaging)
影像:由80eV至102eV…………………………………….107
圖5-22(b) 未退火試片之一系列ESI (Electron Spectroscopic Imaging)
影像:由104eV至126eV……………………………………108
圖5-22(c) 未退火試片之一系列ESI (Electron Spectroscopic Imaging)
影像:由128eV至150eV……………………………………109
圖5-22(d) 未退火試片之一系列ESI (Electron Spectroscopic Imaging)
影像:由152eV至174eV……………………………………110
圖5-22(e) 未退火試片之一系列ESI (Electron Spectroscopic Imaging)
影像:由176eV至198eV……………………………………111
圖5-23(a) 未退火試片之一系列ESI (Electron Spectroscopic Imaging)
影像:由510eV至532eV……………………………………112
圖5-23(b) 未退火試片之一系列ESI (Electron Spectroscopic Imaging)
影像:由534eV至556eV……………………………………113
圖5-23(c) 未退火試片之一系列ESI (Electron Spectroscopic Imaging)
影像:由558eV至580eV……………………………………114
圖5-23(d) 未退火試片之一系列ESI (Electron Spectroscopic Imaging)
影像:由582eV至604eV…………………………………….115
圖5-23(e) 未退火試片之一系列ESI (Electron Spectroscopic Imaging)
影像:由606eV至610eV……………………………………116
圖5-24(a) 450℃退火試片之一系列ESI (Electron Spectroscopic Imaging)影像:由80eV至102eV…………………………………….117
圖5-24(b) 450℃退火試片之一系列ESI (Electron Spectroscopic Imaging)影像:由104eV至126eV………………………………….118
圖5-24(c) 450℃退火試片之一系列ESI (Electron Spectroscopic Imaging)影像:由128eV至150eV…………………………………..119
圖5-24(d) 450℃退火試片之一系列ESI (Electron Spectroscopic Imaging)影像:由152eV至174eV……………………………………120
圖5-24(e) 450℃退火試片之一系列ESI (Electron Spectroscopic Imaging)影像:由176eV至198eV…………………………………..121
圖5-25(a) 450℃退火試片之一系列ESI (Electron Spectroscopic Imaging)影像:由510eV至532eV…………………………………..122
圖5-25(b) 450℃退火試片之一系列ESI (Electron Spectroscopic Imaging)影像:由534eV至556eV……………………………………123
圖5-25(c) 450℃退火試片之一系列ESI (Electron Spectroscopic Imaging)影像:由558eV至580eV…………………………………..124
圖5-25(d) 450℃退火試片之一系列ESI (Electron Spectroscopic Imaging)影像:由582eV至604eV……………………………………125
圖5-25(e) 450℃退火試片之一系列ES I (Electron Spectroscopic Imaging)影像:由606eV至610eV……………………………………126
圖5-26(a) 因紀錄強度穩定度不足而產生缺陷之原始影像能譜( image-spectrum )………………………...…………………128
圖5-26(b) 修正後之原始影像能譜( image-spectrum )……………… .129
圖5-27(a)退火前各介電層之矽核損失能譜三維縱線分佈圖( line profile )……………………………………………………….130
圖5-27(b) 450℃退火後各介電層之矽核損失能譜三維縱線分佈圖( line profile )………………………...……………………………..131
圖5-28(a).未退火試片中黑鑽石之矽L特徵峰電子能量損失譜與重建後影像能譜比較圖…………………………...………………...131
圖5-28(b).未退火試片中二氧化矽之矽L特徵峰電子能量損失譜與重建後影像能譜比較圖…………………………………………..132
圖5-29(a).未退火試片中黑鑽石之氧K特徵峰原始影像能譜圖……...132
圖5-29(b).未退火試片中二氧化矽之氧K特徵峰原始影像能譜圖……133
圖5-30 退火前後黑鑽石分子結構之變化演進圖(3D示意圖)…………135
圖5-31 退火前後黑鑽石分子鍵結之變化演進圖(平面示意圖)………..136
Chap 2
1.陳力俊等著, “第二章、電子顯微鏡結構及其成像原理”, 材料電子顯微鏡學, 修訂再版, 科儀叢書3, (1994) p.21-43.
2.陳福榮、張立, “高分辨能量選擇電子顯微鏡學”, 科儀新知, 15(4), (1994) p.88
3.L. Reimer, Energy-filtering transmission electron microscopy (Springer-Verlag, New York) (1995)
4.R.F. Egerton, Electron-energy loss spectroscopy in the electron microscope (Plenum Press, New York) (1996)
5.F. Hofer, W. Grogger, P. Warbichler and I. Papst, “Quantitative Energy-Filtering Transmission Electron Microscopy ( EFTEM ) “, Mikrochim. Acta 132: (2000) p.273
6.C. Jeanguillaume and C. Colliex, “Spectrum-image: the next step in EELS digital acquisition and processing”, Ultramicroscopy 28: (1989) p.252
7.J.A. Hunt and D.B. Williams, “Electron energy-loss spectrum-imaging”, Ultramicroscopy 38: (1991) p.47
8.G. Botton and G. L’Esperance, “Development, quantitative performance and application of a parallel electron energy-loss spectrum imaging system”, J. Microsc. 173: (1994) p.9
9.N. Bonnet, “Multivariate statistical methods for the analysis of microscope image series: applications in materials science”, J. Microsc. 190: (1998) p.2
10.C. Jeanguillaume, P. Trebbia, and C. Colliex, “About the use of electron energy-loss spectroscopy for chemical mapping of thin foil with high spatial resolution”, Ultramicroscopy 3 (1978) p.237
11.O.L. Krivanek, A.J. Gubbens, M.K. Kundmann, and G.C. Carpenter, “Elemental mapping with an energy-selecting imaging filter”, 51st Ann. Proc. Electron Microsc. Soc. Am. (San Francisco Press, San Francisco) (1993) p.586
12.H. Shuman, C.F. Chang and A.P. Somlyo, “Elemental imaging and resolution in energy-filtered conventional electron microscopy”, Ultramicroscopy. 19 (1986) p.121
13.P .A. Crozier, “Quantitative elemental mapping of materials by energy-filtered imaging”, Ultramicroscopy. 58 (1995) p.157
14.J. Bentley, E.A. Kenik, N.D. Evans and E.L. Hall, “Energy-Filtered imaging on a 300Kv TEM”, Inst. Phys. Conf. Ser. 147 (1995) p.187
15.F. Hofer, W. Grogger, G. Kothleitnrt and P. Warbichler, “Quantitative analysis of EFTEM elemental distribution images”, Ultramicroscopy 67 (1997) p.83
16.J. Mayer, U. Eigenthaler, J.M. Plitzko, and F. Dettenwanger, “Quantitative Analysis of Electron Spectroscopic Imaging Series”, Micron 5 (1997) p.361
17.H. Tenailleau and J.M. Martin, ”A new background subtraction for low-energy EELS core edges”, J. Microsc. 166 (1992) p.297
18.A. Berger, J. Mayer and H. Kohl, “Detection limits in elemental distribution images produced by energy-filtering TEM -case- study of grain-boundaries in Si3N4”, Ultramicroscopy 55 (1994) p.101
19.F. Hofer and P. Warbichler, “Improved imaging of secondary phases in solids by energy-filtering TEM”, Ultramicroscopy 63 (1996) p.21
20.P.A. Crozier and R.F. Egerton, “Mass-thickness determination by Bethe-sum-rule normalization of the electron energy-loss spectrum”, Ultramicroscopy 27 (1989) p.9
21.D.B. Williams and C.B. Carter, Transmission Electron Microscopy (Plenum Press. New York & London) (1996)
22.T. Malis, S. Cheng and R.F. Egerton, “EELS log-ratio technique for specimen-thickness measurement in the TEM”, J. Electron. Microsc. Tech. 8 (1988) p.8471
23.F. Hofer, W. Grogger and P. Warbichler, “Characterization of nanometer sized precipitation in solids by electron spectroscopic imaging”, Ultramicroscopy 59 (1995) p.15
24.W. Jager and J. Mayer, “Energy filtered transmission electron microscopy of SimGen superlattices and Si-Ge heterostructures”, Ultramicroscopy, 38 (1995) p.47
25.M. Schenner and P. Schattschneider, “Spatial resolution in selected-area EELS”, Ultramicroscopy. 55 (1996) p.31
26.J.L. Lavergne, J.M. Martin and M. Belin, “Interactive electron energy-loss elemental mapping by the “Image-Spectrum” method”, Microsc. Microanal. Microstruct. 3 (1992) p.517
27.H. Shuman, C.F. Chang and A.P. Somlyo, “Elemental imaging and resolution in energy-filtered conventional electron microscopy”, Ultramicroscopy. 19 (1986) p.121
28.J. Mayer, U. Eigenthaler, J.M. Plitzko, and F. Dettenwanger, “Quantitative Analysis of Electron Spectroscopic Imaging Series”, Micron 5 (1997) p.361
29.L. Ponsonnet, B. Vacher and J.M. Martin, “High resolution chemical mapping in the energy-filtered TEM: application to interface layers ceramics”, Thin Solid Films 324 (1998) p.170
30.J. Marien, J.M. Plitzko, R. Spolenak, R.M. Keller and J. Mayer, “Quantitative electron spectroscopic imaging studies of microelectronic metallization layers”, J. Microsc. 194: (1998) p.71
31.P.J. Thomas and P.A. Midgley, “Image-Spectroscopy-I. The advantages of increased spectral information for compositional EFTEM analysis”, Ultramicroscopy, 88 (2001) p.179
32.P.J. Thomas and P.A. Midgley, “Image-Spectroscopy-II. The removal of plural scattering from extended energy-filtered series by Fourier deconvolution”, Ultramicroscopy, 88 (2001) p.187
33.J.M. Plitzko and J. Mayer, “Quantitative thin film analysis by energy filtering transmission microscopy”, Ultramicroscopy, 78 (1999) p.207
34.P.J. Thomas and P.A. Midgley, “Fourier Deconvolution of Image-Spectra: the Removal of Plural Scattering from Energy-Filtered Series”, Inst. Phys. Conf. Ser. 161: (1999) (EMAG 99) p.179
35.P.J. Thomas, P.A. Midgley, and P. Spellward, “Compositional Mapping in the EFTEM using Image-Spectroscopy”, Inst. Phys Conf. Ser. 161: (1999) (EMAG 99) p.239
36.W. Grogger, F. Hofer, P. Warbichler and G. Kothleitner, “Quantitative Energy-Filtering Transmission Electron Microscopy in Materials Science“, Microscopy and Microanalysis 6: (2000) p.161
37.C. Quintana, J.P. Lechaire, N. Bonnet, C. Risco and J.L. Carrascosa, “Elemental Maps From EFTEM Images Using Two Different Background Subtraction Models” Microscopy Research and Technique 53 (2001) p.147
38.P.J. Thomas and P.A. Midgley, “Extended image-series analysis in the energy-filtered TEM”, EUREM 12: (2000) I309-I310
39.M.H.F Overwijk and D. Reefman, “Maximum-entropy deconvolution applied to energy-loss spectroscopy”, Micron 31: (2000) p.325
40.K. Singhal and J. Wlach, “Interpolation using fast Fourier transform”, Proc. IEEE (1972 ) p.1558
41.F.-R.Chen, J.J. Kai, L. Chang, J.Y. Wang, and W.J. Chen, “Improvement of resolution by maximum entropy linear image restoration for NiSi2 /Si interface”, J. Elec. Microsc. 48(6): (1999) p.827
42.R.F. Egerton, in Electron-energy loss spectroscopy in the electron microscope (2nd Edition, Plenum Press, New York) (1996) pp.149-pp.151
43.R.H. Ritchie, “Plasmon loss by fast electrons in thin film”, Phys. Rev. 106 (1975) p.874
44.R.F. Egerton, in Electron-energy loss spectroscopy in the electron microscope (2nd Edition, Plenum Press, New York) (1996) pp.151-pp.154
45.R. Liu, ULSI technology, edited by C.Y. Chang and S.M. Sze, Chap. 9 pp. 371-468 (McGraw-Hill, Singapore, 1996)
46.D. Pramanik and A.N. Saxena, “VLSI metallization using aluminum and its alloys .1.”, Solid State Technol., January (1983) p.127
47.D. Pramanik and A.N. Saxena, “VLSI metallization using aluminum and its alloys .2.”, Solid State Technol., March (1983) p.131
48.P.J. Ireland, “High aspect ratio contacts: A review of the current tungsten plug process”, Thin Solid Films, 304 (1997) p.1
49.G.S. Sandhu, “Process technology and integration challenges for high performance interconnects”, Thin Solid Films, 320 (1998) p.1
50.B. Vollmer, T. Licata, D. Restaino, J.G. Ryan, “Recent advances in the application of collimated sputtering”, Thin Solid Films 247(1): (1994) p.104
51.D.C. Edelstein, G.A. Sai-Halasz, and Y.-J. Mii, “VLSI on-chip interconnection performance simulations and measurements “, IBM J. Res Dev. 39(4) (1995) p.383
52.International Technology Roadmap for Semiconductors, 1999Edition, Interconnect, http://public.itrs.net/files/1999_SIA_Roadmap/Int.pdf, p.166.
53.J.G. Ryan, R.M. Geffken, N.R. Poulin, and J.R. Paraszczak, “The evolution of interconnection technology at IBM”, IBM J. Res Dev., 39(4) (1995) p.371
54.M.T. Buhr, in Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, edited by R. Havemann, J. Schmitz, H. Komiyama, and K. Tsubouchi (Mater. Res. Soc. Symp. Proc., Pittsburgh, 1996) p.3
55.M. Bohr, Tech. Digest IEEE Int. Electron. Devices Meeting 1995, p.241
56.The National Technology Roadmap for Semiconductors (Semiconductor Industry Associated, San Jose, CA, 1999)
57.S-P. Jeng, M. Chang, T. Kroger, P. McAnally, and R. Havemann, VLSI Tech. Symp. Tech. Dig. (1994) p.73
58.S-P. Jeng, R. Havemann and M. Chang, in Advanced Metallization for Device and Circuits-Science, Technology, and Manufacturability, Edited by S.P. Murarka, A. Katz, K.N. Tu, and K. Maex (Mater. Res. Soc. Symp. Proc. 337, Pittsburgh, 1994) p.25
59.S. P. Muraka, “Multilevel interconnections for USLI and GSI era”, Material Sci. and Eng., R19 (1997) p.87
60.M.-A. Nicolet and S.S. Lau, in VLSI Electronics: Microstructure Science, New York, edited by N. Einspruch and G. Larrabee, 6 (1983) p.329
61.J. O. Olowolafe and J. W. Mayer, “Interactions of Cu with CoSi2, CrSi2 and TiSi2 with and without TiNx Barrier Layers”, J. Appl. Phys., 68(12) (1991) p.6207
62.J. R. Lloys and J. J. Clement, “Electromigration in copper conductors”, Thin Solid Films, 262(1-2) (1995) p.135
63.鄭建星、陳貞夙, ”應用於先進積體電路之低介電常數材料”, 電子月刊、第六卷、第十期 (2000) p.116
64.Li-Qun Xia “ Handbook of Semiconductor Manufacuring Technology “ Edited by Yoshio Nishi and Robert Doering, Chap.11 pp.327-330 (Marcel Dekker, New York, Basel, 2000)
65.S. Yang et al., “A high Performance 180nm Generation Logic Technology”, Proceeding of IEDM, (1998) p.197
66.H M’saad, M. Vellaikal, L. Zhang, Y. Wang, D. Witty, K. Rossman, F. Moghadam, Proceeding of 5th Int. Dielectric for ULSI Multilevel Interconnection Conf. (1999) p.210
67.T. Homma, R. Yamaguchi and Y. Murao, “A room-temperature chemical vapor-deposition SiOF film formation technology for the inertia-layer insuring in sub-multilevel interconnections”, J. Electrochem. Soc. 140 (1993) p.687
68.P.W. Lee, S. Mizuno, A. Verma, H. Tran and B. Nguyen, “Dielectric constant and stability of fluorine-doped plasma enhanced chemical vapor deposited SiO2 thin films“, J. Electrochem. Soc. 143 (1996) p.2015
69.M.G. Albrecht, C. Blanchette, “Materials issues with thin film hydrogen silsesquioxane low K dielectrics”, J. Electrochem. Soc. 145 (1998) p.4019
70.J. Waeterloos, H. Meynen, B. Coenegrachts, T. Gao, J. Grillaert and L. Van den Hove, Proceeding of 3th Int. Dielectric for ULSI Multilevel Interconnect Conf., (1997) p.310
71.S.J. Martin, J.P. Godschalx, M.E. Mills, E.O. Shaffer and P.H. Townsend, “A Low-Dielectric-Constant Polymer”, Adv. Mater. 12(23) (2000) p.1769
72.A. Rajagopal et al., “Surface characterization of a low dielectric constant polymer-SiLK* polymer, and investigation of its interface with Cu”, J. Vac. Sci. Technol. B 17(5) (1999) p.2336
73.David Cheung, “Black Diamond CVD Low-K Films for Copper Damascene”, Proceeding of SEMICON West for Low k Dielectric Materials Technology (1999) p.F-1
74.蘇世傑、林森弘, “有機矽化氫利用CVD方式沈積低介電薄膜之特性研究”, 科學會訊(Materials Science Bulletin):材料科技與產業資訊,第七卷、第四期 (2000) p.23
75.M. Naik et al., “Process Integration of Double Level Copper-Low k (k = 2.8) Interconnect”, Proceeding of IITC (1999) p.99-181
76.P. Laura, “Removing Barriers to Low-k Dielectric Adoption in http://www.e-insite.net/semiconductor/index.asp?layout=article&articleId=CA213798”, Semiconductor International, May 1 2002, Pictures Source from Advanced Micro Devices (AMD) company
Chap 3
77. S-C Lo, F.-R. Chen, J.J. Kai, L.C. Chen, L. Chang, C.C. Chiang, P. Ding, B. Chin, H. Zhang, and F. Chen, “Four dimensional dielectric property image obtained from electron spectroscopic imaging series”, Journal of electron Microscopy, 51(6) ( 2001 ) p.493
78. J. Mayer, U. Eigenthaler, J.M. Plitzko, and F. Dettenwanger, “Quantitative Analysis of Electron Spectroscopic Imaging Series”, Micron 5: (1997) p.361
79. D. Fraser, “Interpolation by the FFT Revisited-An Experimental Investigation”, IEEE Trans. Acoust., Speech, Singnal Processing 37(5):(1989) p.665
80. R.W. Schafer and L.R. Rabiner, “A digital signal processing approach to interpolation”, Proc. IEEE 61: (1973) p.691
81. A.B. Ray, “Deconvolution of multiple scattering effects from core level electron energy loss spectra”, 37th Ann. Proc. Electron Microsc. Soc., Am Ed. G.W. Bailey, Claitor’s Publishing, Baiton Gouge, Louisiana, (1979) p.522
82. M.H.F. Overwijk and D. Reefman, “Maximum-entropy deconvolution applied to electron energy-loss spectroscopy”, Micron 31: (2000) p.325
83. F.-R. Chen, J.J. Kai , L. Chang, J.Y. Wang, and W.J. Chen, “Improvement of resolution by maximum entropy linear image restoration for NiSi2/Si interface”, J. Elec. Microsc. 48(6): (1999) p.827
84. R.F. Egerton, in Electron-energy loss spectroscopy in the electron microscope (2nd Edition, Plenum Press, New York) (1996) pp.245-pp.256
85. L. Reimer, Energy-filtering transmission electron microscopy (Springer-Verlag, New York) (1995) pp.286-288
86. D.W. Johnson and J.C.H. Spence, “Determination of the single-scattering probability distribution from plural-scattering data”, J. Phys. D, 7 (1974) p.71
87. R.F. Egerton and P.A. Crozier, ”The use of Fourier techniques in electron energy-loss spectroscopy”, Scanning Miscoscopy Supplements 2 (1988) p.245
88. R.D. Leapman and C.R. Swyt, “A practical method for removing plural scattering from core-edges in EELS”, 39th Ann. Proc. Electron Microsc. Soc., Am Ed. G.W. Bailey, Claitor’s Publishing, Baiton Gouge, Louisiana, (1981)
89. D.B. Williams and C.B. Cater, in Transmission Electron Microscopy, (Plenum, New York, 1996), pp.637-pp.685
90. T. Malis, S.C. Cheng and R.F. Egerton, ”EELS log-ratio technique for specimen-thickness measurement in the TEM”, J. Elec. Microsc. Tech. 8: (1988) p.8471
91. Y.Y. Yang and R.F. Egerton, “Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope”, Micron 26(1): (1995) p.1
92. R.F. Egerton, in Electron-energy loss spectroscopy in the electron microscope (2nd Edition, Plenum Press, New York) (1996) pp.302-pp.310
93. H.A. Kramer, “La diffusion de la lumiére par les atoms”, Atti. Congr. Int. Fis. Como. 2 (1927) p.545
94. B.R. de L. Kronig, On the theory of dispersion of X-rays”, J. Opt. Soc. Am. 12 (1926) p.547
95. C.P.E. Batson, in Transmission electron Energy Loss Spectroscopy in Materials Science, edited by M.M. Disko, C.C. Ahn, and B. Fultz, Electronic, Magnetic and Photonic Materials Division Monograph Series Vol. 2 (The Minerals, Metals and Materials Society, Pennsylvania, 1991) pp.217
96. P.E. Baston, “Advanced spatially resolved EELS in the STEM”, Ultramicroscopy 78 (1999) p.33
97. L. Reimer, Energy-filtering transmission electron microscopy in “Chap 3.4 Band-Gap Analysis”, (Springer-Verlag, New York) (1995) pp.199-202
98. P.E. Batson, K.L. Kavanagh, J.M. Woodall, and J.W. Mayer, “Electron-energy-loss scattering near a single misfit dislocation at the GaAs/GaInAs interface”, Phys. Rev. Lett. 57 (1986) p.2729
99. B. Rafferty, and L. M. Brown, “Direct and indirect transition in the region of the band gap using electron-energy-loss spectroscopy”, Phys. Rev. B, 58 (1998) p.10326
100. H. Lakner, B. Rafferty, and G. Brockt, “Electronic structure analysis of (In, Ga, Al)N heterostructures on the nanometre scale using EELS”, J. Micro. 194 (1999) p.79
101. U. Bangert, A. J. Harvey, and R. Keyse, “Assessment of electron energy-loss spectroscopy below 5eV in semiconductor materials in a VG STEM”, Ultramicroscopy 68 (1997) p.173
102. U. Bangert, A. J. Harvey, J. Davidson, R. Keyse and C. Dieker, “Correction between microstructure and localized band gap of GaN grown on SiC”, J. Appl. Phys. 83(12) (1998) p.7726
103. J. Bruley and L.M. Brown, Analytical Electron Microscopy Workshop, 1987 Proceedings, edited by G.W. Lorimer (The Institute of Metals. London, 1988)
104. D.A. Stephenson and N.J. Binkowksi, “X-Ray photoelectron spectroscopy of silica in theory and experiment”, J. of Non-Crystalline Solids, 22 (1976) p.399
105. J.R. Chelikowsky and M. Schlüter, “Electron state in -quartz: A self-consistent pseudopotential calculation”, Physical. Review B, 15 (1977) p.4020.
106. Y. Xu and W.Y. Ching, “Electronic and optical properties of all polymorphic forms of silicon dioxide”, Physical. Review B, 44 (1991) p.11048
107. J.A. Tossell, “The Electronic Structure of Silicon, Aluminum, and Magnesium in Tetrahedral Coordination with Oxygen from SCF-X MO Calculation”, J. of the American Chemical Society, 97 (1975) p.4840
108. J.A. Tossell, “A comparison of silicon-oxygen bonding in quartz and magnesium olivine from X-ray spectra and molecular orbital calculations”, American Mineralogist, 62 (1977) p.136
109. W.M. Skiff, R.W. Carpenter and S.H. Lin, “SiL core edge fine structure in an oxidation series of silicon compounds: A comparison of microelectron energy loss spectra with theory”, J. Appl. Phys., 58(9) (1985) p.3463
110. P.E. Boston, K.L. Kavanagh, C.Y. Wong and J.M. Woodall, “Local bonding electronic structure obtained from electron energy loss scattering”, Ultramicroscopy, 22 (1987) p.89
111. P.E. Boston and J.R. Heath, ”Electron Energy Loss Spectroscopy of Silicon Nanocrystals: The Conduction Band”, Physical. Review Letters, 71(6) (1993) p.911
112. P.E. Boston, “Silicon L2,3 near-edge fine structure in confined volumes”, Ultramicroscopy, 50 (1993) p.1
113. P.E. Boston, “Atomic Resolution Electronic Structure in Silicon-Based Semiconductors”, J. Electron Microsc., 45 (1996) p.51
114. D. Li, G.M. Bancroft, M. Kasrai, M.E. Fleet, X.H. Feng, K.H. Tan and B.X. Yang, “High-resolution Si K- and L2,3- edge XANES of -quartz and stishovite”, Solid State Communications, 87 (1993) p.61
115. I. Tanaka, J. Kawai and H. Adachi, “Near-edge x-ray-absorption fine structure of crystalline silicon dioxide”, Physical. Review B, 52 (1995) p.11733
116. D.W. McComb, P.L. Hansen and R. Brydson, “A study of silicon ELNES in nesosilicates”, Microscopy, Microanalysis, Microstructure, 2 (1991) p.561
117. T. Sharp, Z. Wu, F. Seifert, B. Poe, M. Doerr and E. Paris, “Distinction between six- and four- fold coordinated silicon in SiO2 polymorphs via electron loss near edge structure (ELNES) spectroscopy”, Physics and Chemistry of Minerals, 23 (1996) p.17
118. Z. Wu, F. Seifert, B. Poe and T. Sharp, “Multiple-scattering calculation for SiO2 polymorphs: a comparison to ELNES and XANES spectra”, J. Physics: Condensed Matter, 8 (1996) p.3323
119. L.A.J. Garvie and P.R. Buseck, “Bonding in silicates: Investigation of the Si L2,3 edge by parallel electron energy-loss spectroscopy”, American Mineralogist, 84 (1999) p.946
120. D.J. Wallis, P.H. Gaskell and R. Brydson, “Oxygen K near-edge spectra of amorphous silicon suboxides”, J. Miscos., 180(3) (1995) p.307
Chap4
121. 台灣應用材料股份有限公司內部資料(1997-2000).
122. O.L. Krivanek, M.K. Kundmann and K. Kimoto, “Spatial resolution in EFTEM elemental maps”, J. Microsc. 180 (1995) p.277
Chap5
123. E.D. Palik, Handbook of optical constants of solid Ⅲ (Academis Press, London). pp187-197 (1998)
124. Li-Qun Xia “ Handbook of Semiconductor Manufacuring Technology “ Edited by Yoshio Nishi and Robert Doering, Chap.11 (Marcel Dekk+er, New York, Basel, 2000) pp.325
125. I. Alexandrou, A.J. Papworth, B. Rafferty, G.A.J. Amaratunga, C.J. Kiely and L.M. Brown, “Calculation of the electronic structure of carbon films using electron energy loss spectroscopy”, Ultramicroscopy, 90 (2001) p.39
126. W.K. Hsieh, F.R. Chen and J.J. Kai, “Quantitative Phase Imaging Using Transport of Intensity Equation: A Solution From Maximum Entropy Method” Submitted to Physics Review Letter.
127. W.K. Hsieh, F.R. Chen and J.J. Kai, “Resolution Extension and Exit Reconstruction in Complex HRTEM. ” Submitted to Ultramicroscopy.
128. Y.H. Kim, S.K. Lee and H.J. Kim, “Low-k Si-O-C-H composite films prepared by plasma-enhanced chemical vapor deposition using bis-trimethylsilylmethane precursor”, J. Vac. Sci. Technol. A, 18(4) (2000) p.1216
129. J.Y. Kim, M.S. Hwang, Y.H. Kim, H.J. Kim and Y. Lee, “Original of low dielectric constant of carbon-incorporation silicon oxide film deposited by plasma enhanced chemical vapor deposition”, J. Appl. Phys, 90(5) (2001) p.2469
130. U. Buechner, “The dielectric function of mica and quartz determined by electron energy losses”, J. Phys. C, (8) (1975) p.2781
131. R.F. Egerton, Electron-energy loss spectroscopy in the electron microscope (Plenum Press, New York) (1996) p.262-268
132. A. Nara and H. Itoh, “Low Dielectric Constant Insulator Formed by Downstream Plasma CVD at Room Temperature Using TMS/O2“, Jpn. J. Appl. Phys., Part 1 36 (1997) p.1477
133. T. Nakano, K. Tokunaga and T. Ohta, “Effects of Si-C bond content in film properties of organic spin-on glass”, J. Electrochem. Soc. 142 (1995) p.1303
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top