Chap 2
1.陳力俊等著, “第二章、電子顯微鏡結構及其成像原理”, 材料電子顯微鏡學, 修訂再版, 科儀叢書3, (1994) p.21-43.
2.陳福榮、張立, “高分辨能量選擇電子顯微鏡學”, 科儀新知, 15(4), (1994) p.883.L. Reimer, Energy-filtering transmission electron microscopy (Springer-Verlag, New York) (1995)
4.R.F. Egerton, Electron-energy loss spectroscopy in the electron microscope (Plenum Press, New York) (1996)
5.F. Hofer, W. Grogger, P. Warbichler and I. Papst, “Quantitative Energy-Filtering Transmission Electron Microscopy ( EFTEM ) “, Mikrochim. Acta 132: (2000) p.273
6.C. Jeanguillaume and C. Colliex, “Spectrum-image: the next step in EELS digital acquisition and processing”, Ultramicroscopy 28: (1989) p.252
7.J.A. Hunt and D.B. Williams, “Electron energy-loss spectrum-imaging”, Ultramicroscopy 38: (1991) p.47
8.G. Botton and G. L’Esperance, “Development, quantitative performance and application of a parallel electron energy-loss spectrum imaging system”, J. Microsc. 173: (1994) p.9
9.N. Bonnet, “Multivariate statistical methods for the analysis of microscope image series: applications in materials science”, J. Microsc. 190: (1998) p.2
10.C. Jeanguillaume, P. Trebbia, and C. Colliex, “About the use of electron energy-loss spectroscopy for chemical mapping of thin foil with high spatial resolution”, Ultramicroscopy 3 (1978) p.237
11.O.L. Krivanek, A.J. Gubbens, M.K. Kundmann, and G.C. Carpenter, “Elemental mapping with an energy-selecting imaging filter”, 51st Ann. Proc. Electron Microsc. Soc. Am. (San Francisco Press, San Francisco) (1993) p.586
12.H. Shuman, C.F. Chang and A.P. Somlyo, “Elemental imaging and resolution in energy-filtered conventional electron microscopy”, Ultramicroscopy. 19 (1986) p.121
13.P .A. Crozier, “Quantitative elemental mapping of materials by energy-filtered imaging”, Ultramicroscopy. 58 (1995) p.157
14.J. Bentley, E.A. Kenik, N.D. Evans and E.L. Hall, “Energy-Filtered imaging on a 300Kv TEM”, Inst. Phys. Conf. Ser. 147 (1995) p.187
15.F. Hofer, W. Grogger, G. Kothleitnrt and P. Warbichler, “Quantitative analysis of EFTEM elemental distribution images”, Ultramicroscopy 67 (1997) p.83
16.J. Mayer, U. Eigenthaler, J.M. Plitzko, and F. Dettenwanger, “Quantitative Analysis of Electron Spectroscopic Imaging Series”, Micron 5 (1997) p.361
17.H. Tenailleau and J.M. Martin, ”A new background subtraction for low-energy EELS core edges”, J. Microsc. 166 (1992) p.297
18.A. Berger, J. Mayer and H. Kohl, “Detection limits in elemental distribution images produced by energy-filtering TEM -case- study of grain-boundaries in Si3N4”, Ultramicroscopy 55 (1994) p.101
19.F. Hofer and P. Warbichler, “Improved imaging of secondary phases in solids by energy-filtering TEM”, Ultramicroscopy 63 (1996) p.21
20.P.A. Crozier and R.F. Egerton, “Mass-thickness determination by Bethe-sum-rule normalization of the electron energy-loss spectrum”, Ultramicroscopy 27 (1989) p.9
21.D.B. Williams and C.B. Carter, Transmission Electron Microscopy (Plenum Press. New York & London) (1996)
22.T. Malis, S. Cheng and R.F. Egerton, “EELS log-ratio technique for specimen-thickness measurement in the TEM”, J. Electron. Microsc. Tech. 8 (1988) p.8471
23.F. Hofer, W. Grogger and P. Warbichler, “Characterization of nanometer sized precipitation in solids by electron spectroscopic imaging”, Ultramicroscopy 59 (1995) p.15
24.W. Jager and J. Mayer, “Energy filtered transmission electron microscopy of SimGen superlattices and Si-Ge heterostructures”, Ultramicroscopy, 38 (1995) p.47
25.M. Schenner and P. Schattschneider, “Spatial resolution in selected-area EELS”, Ultramicroscopy. 55 (1996) p.31
26.J.L. Lavergne, J.M. Martin and M. Belin, “Interactive electron energy-loss elemental mapping by the “Image-Spectrum” method”, Microsc. Microanal. Microstruct. 3 (1992) p.517
27.H. Shuman, C.F. Chang and A.P. Somlyo, “Elemental imaging and resolution in energy-filtered conventional electron microscopy”, Ultramicroscopy. 19 (1986) p.121
28.J. Mayer, U. Eigenthaler, J.M. Plitzko, and F. Dettenwanger, “Quantitative Analysis of Electron Spectroscopic Imaging Series”, Micron 5 (1997) p.361
29.L. Ponsonnet, B. Vacher and J.M. Martin, “High resolution chemical mapping in the energy-filtered TEM: application to interface layers ceramics”, Thin Solid Films 324 (1998) p.170
30.J. Marien, J.M. Plitzko, R. Spolenak, R.M. Keller and J. Mayer, “Quantitative electron spectroscopic imaging studies of microelectronic metallization layers”, J. Microsc. 194: (1998) p.71
31.P.J. Thomas and P.A. Midgley, “Image-Spectroscopy-I. The advantages of increased spectral information for compositional EFTEM analysis”, Ultramicroscopy, 88 (2001) p.179
32.P.J. Thomas and P.A. Midgley, “Image-Spectroscopy-II. The removal of plural scattering from extended energy-filtered series by Fourier deconvolution”, Ultramicroscopy, 88 (2001) p.187
33.J.M. Plitzko and J. Mayer, “Quantitative thin film analysis by energy filtering transmission microscopy”, Ultramicroscopy, 78 (1999) p.207
34.P.J. Thomas and P.A. Midgley, “Fourier Deconvolution of Image-Spectra: the Removal of Plural Scattering from Energy-Filtered Series”, Inst. Phys. Conf. Ser. 161: (1999) (EMAG 99) p.179
35.P.J. Thomas, P.A. Midgley, and P. Spellward, “Compositional Mapping in the EFTEM using Image-Spectroscopy”, Inst. Phys Conf. Ser. 161: (1999) (EMAG 99) p.239
36.W. Grogger, F. Hofer, P. Warbichler and G. Kothleitner, “Quantitative Energy-Filtering Transmission Electron Microscopy in Materials Science“, Microscopy and Microanalysis 6: (2000) p.161
37.C. Quintana, J.P. Lechaire, N. Bonnet, C. Risco and J.L. Carrascosa, “Elemental Maps From EFTEM Images Using Two Different Background Subtraction Models” Microscopy Research and Technique 53 (2001) p.147
38.P.J. Thomas and P.A. Midgley, “Extended image-series analysis in the energy-filtered TEM”, EUREM 12: (2000) I309-I310
39.M.H.F Overwijk and D. Reefman, “Maximum-entropy deconvolution applied to energy-loss spectroscopy”, Micron 31: (2000) p.325
40.K. Singhal and J. Wlach, “Interpolation using fast Fourier transform”, Proc. IEEE (1972 ) p.1558
41.F.-R.Chen, J.J. Kai, L. Chang, J.Y. Wang, and W.J. Chen, “Improvement of resolution by maximum entropy linear image restoration for NiSi2 /Si interface”, J. Elec. Microsc. 48(6): (1999) p.827
42.R.F. Egerton, in Electron-energy loss spectroscopy in the electron microscope (2nd Edition, Plenum Press, New York) (1996) pp.149-pp.151
43.R.H. Ritchie, “Plasmon loss by fast electrons in thin film”, Phys. Rev. 106 (1975) p.874
44.R.F. Egerton, in Electron-energy loss spectroscopy in the electron microscope (2nd Edition, Plenum Press, New York) (1996) pp.151-pp.154
45.R. Liu, ULSI technology, edited by C.Y. Chang and S.M. Sze, Chap. 9 pp. 371-468 (McGraw-Hill, Singapore, 1996)
46.D. Pramanik and A.N. Saxena, “VLSI metallization using aluminum and its alloys .1.”, Solid State Technol., January (1983) p.127
47.D. Pramanik and A.N. Saxena, “VLSI metallization using aluminum and its alloys .2.”, Solid State Technol., March (1983) p.131
48.P.J. Ireland, “High aspect ratio contacts: A review of the current tungsten plug process”, Thin Solid Films, 304 (1997) p.1
49.G.S. Sandhu, “Process technology and integration challenges for high performance interconnects”, Thin Solid Films, 320 (1998) p.1
50.B. Vollmer, T. Licata, D. Restaino, J.G. Ryan, “Recent advances in the application of collimated sputtering”, Thin Solid Films 247(1): (1994) p.104
51.D.C. Edelstein, G.A. Sai-Halasz, and Y.-J. Mii, “VLSI on-chip interconnection performance simulations and measurements “, IBM J. Res Dev. 39(4) (1995) p.383
52.International Technology Roadmap for Semiconductors, 1999Edition, Interconnect, http://public.itrs.net/files/1999_SIA_Roadmap/Int.pdf, p.166.
53.J.G. Ryan, R.M. Geffken, N.R. Poulin, and J.R. Paraszczak, “The evolution of interconnection technology at IBM”, IBM J. Res Dev., 39(4) (1995) p.371
54.M.T. Buhr, in Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, edited by R. Havemann, J. Schmitz, H. Komiyama, and K. Tsubouchi (Mater. Res. Soc. Symp. Proc., Pittsburgh, 1996) p.3
55.M. Bohr, Tech. Digest IEEE Int. Electron. Devices Meeting 1995, p.241
56.The National Technology Roadmap for Semiconductors (Semiconductor Industry Associated, San Jose, CA, 1999)
57.S-P. Jeng, M. Chang, T. Kroger, P. McAnally, and R. Havemann, VLSI Tech. Symp. Tech. Dig. (1994) p.73
58.S-P. Jeng, R. Havemann and M. Chang, in Advanced Metallization for Device and Circuits-Science, Technology, and Manufacturability, Edited by S.P. Murarka, A. Katz, K.N. Tu, and K. Maex (Mater. Res. Soc. Symp. Proc. 337, Pittsburgh, 1994) p.25
59.S. P. Muraka, “Multilevel interconnections for USLI and GSI era”, Material Sci. and Eng., R19 (1997) p.87
60.M.-A. Nicolet and S.S. Lau, in VLSI Electronics: Microstructure Science, New York, edited by N. Einspruch and G. Larrabee, 6 (1983) p.329
61.J. O. Olowolafe and J. W. Mayer, “Interactions of Cu with CoSi2, CrSi2 and TiSi2 with and without TiNx Barrier Layers”, J. Appl. Phys., 68(12) (1991) p.6207
62.J. R. Lloys and J. J. Clement, “Electromigration in copper conductors”, Thin Solid Films, 262(1-2) (1995) p.135
63.鄭建星、陳貞夙, ”應用於先進積體電路之低介電常數材料”, 電子月刊、第六卷、第十期 (2000) p.11664.Li-Qun Xia “ Handbook of Semiconductor Manufacuring Technology “ Edited by Yoshio Nishi and Robert Doering, Chap.11 pp.327-330 (Marcel Dekker, New York, Basel, 2000)
65.S. Yang et al., “A high Performance 180nm Generation Logic Technology”, Proceeding of IEDM, (1998) p.197
66.H M’saad, M. Vellaikal, L. Zhang, Y. Wang, D. Witty, K. Rossman, F. Moghadam, Proceeding of 5th Int. Dielectric for ULSI Multilevel Interconnection Conf. (1999) p.210
67.T. Homma, R. Yamaguchi and Y. Murao, “A room-temperature chemical vapor-deposition SiOF film formation technology for the inertia-layer insuring in sub-multilevel interconnections”, J. Electrochem. Soc. 140 (1993) p.687
68.P.W. Lee, S. Mizuno, A. Verma, H. Tran and B. Nguyen, “Dielectric constant and stability of fluorine-doped plasma enhanced chemical vapor deposited SiO2 thin films“, J. Electrochem. Soc. 143 (1996) p.2015
69.M.G. Albrecht, C. Blanchette, “Materials issues with thin film hydrogen silsesquioxane low K dielectrics”, J. Electrochem. Soc. 145 (1998) p.4019
70.J. Waeterloos, H. Meynen, B. Coenegrachts, T. Gao, J. Grillaert and L. Van den Hove, Proceeding of 3th Int. Dielectric for ULSI Multilevel Interconnect Conf., (1997) p.310
71.S.J. Martin, J.P. Godschalx, M.E. Mills, E.O. Shaffer and P.H. Townsend, “A Low-Dielectric-Constant Polymer”, Adv. Mater. 12(23) (2000) p.1769
72.A. Rajagopal et al., “Surface characterization of a low dielectric constant polymer-SiLK* polymer, and investigation of its interface with Cu”, J. Vac. Sci. Technol. B 17(5) (1999) p.2336
73.David Cheung, “Black Diamond CVD Low-K Films for Copper Damascene”, Proceeding of SEMICON West for Low k Dielectric Materials Technology (1999) p.F-1
74.蘇世傑、林森弘, “有機矽化氫利用CVD方式沈積低介電薄膜之特性研究”, 科學會訊(Materials Science Bulletin):材料科技與產業資訊,第七卷、第四期 (2000) p.23
75.M. Naik et al., “Process Integration of Double Level Copper-Low k (k = 2.8) Interconnect”, Proceeding of IITC (1999) p.99-181
76.P. Laura, “Removing Barriers to Low-k Dielectric Adoption in http://www.e-insite.net/semiconductor/index.asp?layout=article&articleId=CA213798”, Semiconductor International, May 1 2002, Pictures Source from Advanced Micro Devices (AMD) company
Chap 3
77. S-C Lo, F.-R. Chen, J.J. Kai, L.C. Chen, L. Chang, C.C. Chiang, P. Ding, B. Chin, H. Zhang, and F. Chen, “Four dimensional dielectric property image obtained from electron spectroscopic imaging series”, Journal of electron Microscopy, 51(6) ( 2001 ) p.493
78. J. Mayer, U. Eigenthaler, J.M. Plitzko, and F. Dettenwanger, “Quantitative Analysis of Electron Spectroscopic Imaging Series”, Micron 5: (1997) p.361
79. D. Fraser, “Interpolation by the FFT Revisited-An Experimental Investigation”, IEEE Trans. Acoust., Speech, Singnal Processing 37(5):(1989) p.665
80. R.W. Schafer and L.R. Rabiner, “A digital signal processing approach to interpolation”, Proc. IEEE 61: (1973) p.691
81. A.B. Ray, “Deconvolution of multiple scattering effects from core level electron energy loss spectra”, 37th Ann. Proc. Electron Microsc. Soc., Am Ed. G.W. Bailey, Claitor’s Publishing, Baiton Gouge, Louisiana, (1979) p.522
82. M.H.F. Overwijk and D. Reefman, “Maximum-entropy deconvolution applied to electron energy-loss spectroscopy”, Micron 31: (2000) p.325
83. F.-R. Chen, J.J. Kai , L. Chang, J.Y. Wang, and W.J. Chen, “Improvement of resolution by maximum entropy linear image restoration for NiSi2/Si interface”, J. Elec. Microsc. 48(6): (1999) p.827
84. R.F. Egerton, in Electron-energy loss spectroscopy in the electron microscope (2nd Edition, Plenum Press, New York) (1996) pp.245-pp.256
85. L. Reimer, Energy-filtering transmission electron microscopy (Springer-Verlag, New York) (1995) pp.286-288
86. D.W. Johnson and J.C.H. Spence, “Determination of the single-scattering probability distribution from plural-scattering data”, J. Phys. D, 7 (1974) p.71
87. R.F. Egerton and P.A. Crozier, ”The use of Fourier techniques in electron energy-loss spectroscopy”, Scanning Miscoscopy Supplements 2 (1988) p.245
88. R.D. Leapman and C.R. Swyt, “A practical method for removing plural scattering from core-edges in EELS”, 39th Ann. Proc. Electron Microsc. Soc., Am Ed. G.W. Bailey, Claitor’s Publishing, Baiton Gouge, Louisiana, (1981)
89. D.B. Williams and C.B. Cater, in Transmission Electron Microscopy, (Plenum, New York, 1996), pp.637-pp.685
90. T. Malis, S.C. Cheng and R.F. Egerton, ”EELS log-ratio technique for specimen-thickness measurement in the TEM”, J. Elec. Microsc. Tech. 8: (1988) p.8471
91. Y.Y. Yang and R.F. Egerton, “Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope”, Micron 26(1): (1995) p.1
92. R.F. Egerton, in Electron-energy loss spectroscopy in the electron microscope (2nd Edition, Plenum Press, New York) (1996) pp.302-pp.310
93. H.A. Kramer, “La diffusion de la lumiére par les atoms”, Atti. Congr. Int. Fis. Como. 2 (1927) p.545
94. B.R. de L. Kronig, On the theory of dispersion of X-rays”, J. Opt. Soc. Am. 12 (1926) p.547
95. C.P.E. Batson, in Transmission electron Energy Loss Spectroscopy in Materials Science, edited by M.M. Disko, C.C. Ahn, and B. Fultz, Electronic, Magnetic and Photonic Materials Division Monograph Series Vol. 2 (The Minerals, Metals and Materials Society, Pennsylvania, 1991) pp.217
96. P.E. Baston, “Advanced spatially resolved EELS in the STEM”, Ultramicroscopy 78 (1999) p.33
97. L. Reimer, Energy-filtering transmission electron microscopy in “Chap 3.4 Band-Gap Analysis”, (Springer-Verlag, New York) (1995) pp.199-202
98. P.E. Batson, K.L. Kavanagh, J.M. Woodall, and J.W. Mayer, “Electron-energy-loss scattering near a single misfit dislocation at the GaAs/GaInAs interface”, Phys. Rev. Lett. 57 (1986) p.2729
99. B. Rafferty, and L. M. Brown, “Direct and indirect transition in the region of the band gap using electron-energy-loss spectroscopy”, Phys. Rev. B, 58 (1998) p.10326
100. H. Lakner, B. Rafferty, and G. Brockt, “Electronic structure analysis of (In, Ga, Al)N heterostructures on the nanometre scale using EELS”, J. Micro. 194 (1999) p.79
101. U. Bangert, A. J. Harvey, and R. Keyse, “Assessment of electron energy-loss spectroscopy below 5eV in semiconductor materials in a VG STEM”, Ultramicroscopy 68 (1997) p.173
102. U. Bangert, A. J. Harvey, J. Davidson, R. Keyse and C. Dieker, “Correction between microstructure and localized band gap of GaN grown on SiC”, J. Appl. Phys. 83(12) (1998) p.7726
103. J. Bruley and L.M. Brown, Analytical Electron Microscopy Workshop, 1987 Proceedings, edited by G.W. Lorimer (The Institute of Metals. London, 1988)
104. D.A. Stephenson and N.J. Binkowksi, “X-Ray photoelectron spectroscopy of silica in theory and experiment”, J. of Non-Crystalline Solids, 22 (1976) p.399
105. J.R. Chelikowsky and M. Schlüter, “Electron state in -quartz: A self-consistent pseudopotential calculation”, Physical. Review B, 15 (1977) p.4020.
106. Y. Xu and W.Y. Ching, “Electronic and optical properties of all polymorphic forms of silicon dioxide”, Physical. Review B, 44 (1991) p.11048
107. J.A. Tossell, “The Electronic Structure of Silicon, Aluminum, and Magnesium in Tetrahedral Coordination with Oxygen from SCF-X MO Calculation”, J. of the American Chemical Society, 97 (1975) p.4840
108. J.A. Tossell, “A comparison of silicon-oxygen bonding in quartz and magnesium olivine from X-ray spectra and molecular orbital calculations”, American Mineralogist, 62 (1977) p.136
109. W.M. Skiff, R.W. Carpenter and S.H. Lin, “SiL core edge fine structure in an oxidation series of silicon compounds: A comparison of microelectron energy loss spectra with theory”, J. Appl. Phys., 58(9) (1985) p.3463
110. P.E. Boston, K.L. Kavanagh, C.Y. Wong and J.M. Woodall, “Local bonding electronic structure obtained from electron energy loss scattering”, Ultramicroscopy, 22 (1987) p.89
111. P.E. Boston and J.R. Heath, ”Electron Energy Loss Spectroscopy of Silicon Nanocrystals: The Conduction Band”, Physical. Review Letters, 71(6) (1993) p.911
112. P.E. Boston, “Silicon L2,3 near-edge fine structure in confined volumes”, Ultramicroscopy, 50 (1993) p.1
113. P.E. Boston, “Atomic Resolution Electronic Structure in Silicon-Based Semiconductors”, J. Electron Microsc., 45 (1996) p.51
114. D. Li, G.M. Bancroft, M. Kasrai, M.E. Fleet, X.H. Feng, K.H. Tan and B.X. Yang, “High-resolution Si K- and L2,3- edge XANES of -quartz and stishovite”, Solid State Communications, 87 (1993) p.61
115. I. Tanaka, J. Kawai and H. Adachi, “Near-edge x-ray-absorption fine structure of crystalline silicon dioxide”, Physical. Review B, 52 (1995) p.11733
116. D.W. McComb, P.L. Hansen and R. Brydson, “A study of silicon ELNES in nesosilicates”, Microscopy, Microanalysis, Microstructure, 2 (1991) p.561
117. T. Sharp, Z. Wu, F. Seifert, B. Poe, M. Doerr and E. Paris, “Distinction between six- and four- fold coordinated silicon in SiO2 polymorphs via electron loss near edge structure (ELNES) spectroscopy”, Physics and Chemistry of Minerals, 23 (1996) p.17
118. Z. Wu, F. Seifert, B. Poe and T. Sharp, “Multiple-scattering calculation for SiO2 polymorphs: a comparison to ELNES and XANES spectra”, J. Physics: Condensed Matter, 8 (1996) p.3323
119. L.A.J. Garvie and P.R. Buseck, “Bonding in silicates: Investigation of the Si L2,3 edge by parallel electron energy-loss spectroscopy”, American Mineralogist, 84 (1999) p.946
120. D.J. Wallis, P.H. Gaskell and R. Brydson, “Oxygen K near-edge spectra of amorphous silicon suboxides”, J. Miscos., 180(3) (1995) p.307
Chap4
121. 台灣應用材料股份有限公司內部資料(1997-2000).
122. O.L. Krivanek, M.K. Kundmann and K. Kimoto, “Spatial resolution in EFTEM elemental maps”, J. Microsc. 180 (1995) p.277
Chap5
123. E.D. Palik, Handbook of optical constants of solid Ⅲ (Academis Press, London). pp187-197 (1998)
124. Li-Qun Xia “ Handbook of Semiconductor Manufacuring Technology “ Edited by Yoshio Nishi and Robert Doering, Chap.11 (Marcel Dekk+er, New York, Basel, 2000) pp.325
125. I. Alexandrou, A.J. Papworth, B. Rafferty, G.A.J. Amaratunga, C.J. Kiely and L.M. Brown, “Calculation of the electronic structure of carbon films using electron energy loss spectroscopy”, Ultramicroscopy, 90 (2001) p.39
126. W.K. Hsieh, F.R. Chen and J.J. Kai, “Quantitative Phase Imaging Using Transport of Intensity Equation: A Solution From Maximum Entropy Method” Submitted to Physics Review Letter.
127. W.K. Hsieh, F.R. Chen and J.J. Kai, “Resolution Extension and Exit Reconstruction in Complex HRTEM. ” Submitted to Ultramicroscopy.
128. Y.H. Kim, S.K. Lee and H.J. Kim, “Low-k Si-O-C-H composite films prepared by plasma-enhanced chemical vapor deposition using bis-trimethylsilylmethane precursor”, J. Vac. Sci. Technol. A, 18(4) (2000) p.1216
129. J.Y. Kim, M.S. Hwang, Y.H. Kim, H.J. Kim and Y. Lee, “Original of low dielectric constant of carbon-incorporation silicon oxide film deposited by plasma enhanced chemical vapor deposition”, J. Appl. Phys, 90(5) (2001) p.2469
130. U. Buechner, “The dielectric function of mica and quartz determined by electron energy losses”, J. Phys. C, (8) (1975) p.2781
131. R.F. Egerton, Electron-energy loss spectroscopy in the electron microscope (Plenum Press, New York) (1996) p.262-268
132. A. Nara and H. Itoh, “Low Dielectric Constant Insulator Formed by Downstream Plasma CVD at Room Temperature Using TMS/O2“, Jpn. J. Appl. Phys., Part 1 36 (1997) p.1477
133. T. Nakano, K. Tokunaga and T. Ohta, “Effects of Si-C bond content in film properties of organic spin-on glass”, J. Electrochem. Soc. 142 (1995) p.1303