跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/15 23:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖偉欽
研究生(外文):Wei-CinLiao
論文名稱:適用於具有內部連結未知資料取樣大尺度線性延遲的奇異系統且具有閉迴路解耦特性的分散式線性觀測器與軌跡追蹤器設計
論文名稱(外文):Modeling of Decentralized Linear Observers and Trackers for the Unknown Sampled-data Interconnected Large-scale Linear Singular System with Time Delay and Closed-loop Decoupling Property
指導教授:蔡聖鴻
指導教授(外文):Jason Sheng-Hong Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:74
中文關鍵詞:觀測器/卡爾曼濾波器鑑別奇異系統數位再設計進化論演算法
外文關鍵詞:Observer/Kalman filter identificationsingular systemdigital-redesignevolutionary programming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一種適用於具有內部連結未知資料取樣大尺度線性延遲的奇異系統且具有閉迴路解耦特性的分散式線性觀測器與軌跡追蹤器設計方法。透過離線的觀測器/卡爾曼濾波器鑑別方法計算出包含有直接傳輸項的內部連結未知資料取樣大尺度線性延遲的奇異系統之適當階數(或低階)的分散式線性觀測器,然後基於一個含有直接傳輸項的對等分散式系統,以等效的系統來架構一個高增益的類比二次式觀察器和軌跡追蹤器。然後,利用數位再設計法則以得到一個實用的數位觀測器和軌跡追蹤器以控制資料取樣的系統。具有高增益的特性使分散式數位軌跡追蹤器在有內部連結的閉迴路系統具有解耦的特性。最後,藉由進化論演算法來獲得每一個適當的分散式觀測器的權重以增進追蹤性能。
Modeling of decentralized linear observers and trackers for the unknown sampled-data interconnected large-scale linear singular system with time delay and closed-loop decoupling property is proposed in this thesis. Through the off-line observer / Kalman filter identification (OKID), the appropriate (low-) order decentralized linear observers with direct transmission terms from input to output for the unknown sampled-data interconnected large-scale linear singular system with time delay are determined. Then, the high-gain linear quadratic suboptimal analogue observer and tracker are proposed based on the each decentralized equivalent regular system with a direct transmission term from input to output. Subsequently, the prediction-based digital redesign method is utilized to obtain practically implemental digital observer and tracker for the sample-data system. With the high-gain property, the decentralized digital-redesign trackers have the decoupling property for the closed-loop interconnected system. Finally, appropriate weighting of the each decentralized observer can be obtained to improve the performance of observer-based tracker by the evolutionary programming (EP).
中文摘要 I
Abstract II
Acknowledgments III
誌謝 IV
List of Contents V
List of Figures VII

Chapter
1. Introduction 1-1
2. ProblemDescription 2-1
3. Observer/Kalman Filter Identification for Unknown Sample- data Linear Singular System 3-1
3.1 Basic observer equation 3-2
3.2 Computation of observer Markov parameters 3-4
3.2.1 System Markov parameters 3-4
3.2.2 Observer gain Markov parameters 3-5
3.3 Eigensystem realization algorithm 3-5
4. Quadratic Suboptimal Tracker and Observer for Unknown
Sampled-data Linear Singular Systems 4-1
4.1 Observer–based tracker for the regular system 4-2
4.2 Prediction-based linear quadratic digital tracker 4-4
4.3 Prediction-based digital observer 4-6
5. Eolutionary Programming (EP) Based Quadratic Suboptimal
Tracker and Observer for Unknown Sampled-data Linear
Singular Systems 5-1
5.1 Quasi-random sequences (QRS) 5-2
5.2 Tuning the observer gain for the digital redesigned
adaptive tracker 5-2
6. Design Procedure 6-1
7. Illustrative Examples 7-1
7.1 The digital-redesign decentralized observer-based
trackers for the unknown sampled-data interconnected
linear singular system(for N=2) with time delay:
Digital-redesign observer without EP 7-1
7.2 The digital-redesign decentralized observer-based
trackers for the unknown sampled-data interconnected
linear singular system (for N=2) with time delay:
Digital-redesign observer with EP 7-13
8. Conclusion 8-1
References R-1

[1] H. J. Wang, A. K. Xue, Y. F. Guo, and R. Q. Lu, “Input-output approach to robust stability and stabilization for uncertain singular systems with time-varying discrete and distributed delays, Journal of Zhejiang University-Science A, vol. 9, no. 4, pp. 546-551, 2008.
[2] J. S. H. Tsai, C. T. Wang, and L. S. Shieh, “Model conversion and digital redesign of singular systems, Journal of Franklin Institute, vol. 330, pp. 1063-1086, 1993.
[3] B. G. Mertzios, M. A. Christodoulou, B. L. Syrmos, and F. L. Lewis, “Direct controllability and Observability time domain conditions of singular systems, IEEE Transactions Automatic Control, vol. 33, no. 8, pp. 788-7 91, August 1988.
[4] C. J. Wang and H. E. Liao, “Impulse observability and impulse controllability of linear time-varying singular systems, Automatica, 37 pp. 1867-1872, 2001.
[5] P. A. Ioannou and J. Sun, Robust Adaptive Control, New Jersey: Prentice Hall, 1996.
[6] D. T. Gavel and D. D. Seljuk, “Decentralized adaptive control: structural conditions for stability, IEEE Transactions on Automatic Control, vol. 34, pp. 413-426, 1989.
[7]L. Shi and S. K. Singh, “Decentralized adaptive controller design of large-scale systems with higher order interconnections, IEEE Transactions on Automatic Control, vol. 37, pp. 1106-1118, 1992.
[8] R. Ortega and A. Herrera, “A solution to the decentralized adaptive stabilization problem, Systems and Control Letters, vol. 20, pp. 299-306, 1993.
[9]A. Datta, “Performance improvement in decentralized adaptive control: A modified model reference scheme, IEEE Transactions on Automatic Control, vol. 38, no. 11, pp. 1717-1722, 1993.
[10]Y. H. Chen, G. Leitmann, and Z. K. Xiong, “Robust control design for interconnected systems with time-varying uncertainties, International Journal of Control, vol. 54, pp. 1119-1124, 1991.
[11]C. Wen, “Direct decentralized adaptive control of interconnected systems having arbitrary subsystem relative degrees, in Proceedings of the 33rd conference on Decision and Control, Lake Buena Vista, FL, pp. 1187-1192, Dec 14 - Dec 16, 1994.
[12]C. Wen, “Indirect robust totally decentralized adaptive control of continuous-time interconnected systems, IEEE Trans on Automatic Control, vol. 38, no. 6, pp. 1122-1126, June 1995.
[13]K. Ikeda and S. Shin, “Fault tolerant decentralized control systems using backstepping, in Proceedings of the 33rd conference on Decision and Control, New Orleans, LA, pp. 2340-2345, Dec 14 - Dec 16, 1995.
[14]P. R. Pagilla, “Robust decentralized control of large-scale interconnected systems: General interconnections, in Proceedings of American Control Conference, San Diego, CA, pp. 4527-4531, June 2 - June 4, 1999.
[15]O. Huseyin, M. E. Sezer, and D. D. Siljak, “Robust decentralized control using output feedback, IEE Proceedings, vol. 129, pp. 310-314, 1982.
[16]A. Datta and P. A. Ioannou, “Decentralized indirect adaptive control of interconnected systems, International Journal of Adaptive Control and Signal Processing, vol. 5, no. 4, pp. 259-281, 1991.
[17]K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems, Upper Saddle River, New Jersey: Prentice-Hall, 1989.
[18]J. S. H. Tsai, N. T. Hu, P. C. Yang, S. M. Guo, and L. S. Shieh,“Modeling of decentralized linear observer and tracker for a class of unknown interconnected large-scale sampled-data nonlinear system with closed-loop decoupling property, Computers and mathematics with applications, (accepted for publication, in galley, to appear in June) 2010.
[19] M. J. Lin, “Novel Design Methodologies for Quadratic Observers and Trackers of Sampled- data Linear Singular System, M.S. Thesis, University of Cheng-Kung, Tainan, Taiwan, 2009.
[20]J. N. Juang, Applied System Identification, Englewood Cliffs. NJ, Prentice-Hall, 1994.
[21] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin, “ Effective chaotic orbit tracker a prediction based digital redesign approach, IEEE Transaction on Circuits and System-I:, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
[22] L. S. Shieh, Y. T. Tsay, and R. E. Yates, “Some properties of matrix-sign functions derived from continued fractions, IEE Proceedings D - Control Theory and Applications, vol. 130, no. 3, pp.111-118, 1983.
[23]M. Phan, L. G. Horta, J. N. Juang, and R. W. Longman, “LinearSystem Identification Via an Asymptotically Stable Observer, Journal of Optimization Theory and Applications, vol. 79, no. 1, pp. 59-86, October 1993.
[24]S. M. Guo, L. S. Shieh, G. Chen, and C.F. Lin, “Effective chaotic orbit tracker: A prediction-based digital redesign approach, IEEE Transaction on Circuits and Systems-I: Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, Nov. 2000.
[25] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals, Numerische Mathematik, vol. 2, pp. 84-90, 1960.
[26] J. C. Van, “Verteilungsfunktionen, Pro. Kon Akad. Wet., Amsterdam, vol. 38, pp. A13-A21, pp. 1058-1066, 1935.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 適用於資料取樣系統之具有容錯的觀測器與軌跡追蹤器:數位再設計方法
2. 適用於一類具有內部連結之未知大尺度資料取樣非線性系統之輸入限制與致動器錯誤的容錯軌跡追蹤器
3. 基於修正型ARMAX模型和OKID以適用於未知非線性奇異系統之低階主動容錯型狀態空間自調式軌跡追蹤器
4. 適用於具有內部狀態延遲連結之廣義未知大尺度資料取樣線性系統且具有閉迴路解耦特性的分散式模型化線性觀測器與輸入飽和軌跡追蹤器
5. 適用於具有內部狀態延遲連結之未知資料取樣大尺度系統且具有閉迴路解藕特性的新式分散式重複學習追蹤器
6. 適用於非線性隨機混合系統的基於NARMAX模型之狀態空間自調式控制
7. 適用於未知系統並具有輸入限制的軌跡追蹤器: 基於觀測器的改良型模型預測控制法
8. 新型觀測器/卡爾曼濾波器/控制器鑑別法與其應用於輸入限制控制及容錯控制
9. 適用於含直接傳輸項並具有飽和限制之未知系統的數位再設計軌跡追蹤器:基於一種適應性權重調整機制
10. 適用於資料取樣且具多輸入多輸出子系統的非線性大尺度系統其觀測器型分散式自適應軌跡追蹤器之數位再設計:進化演算法則
11. 基於滑模控制之強健追蹤器設計
12. 適用於自駕車之先進的控制技術
13. 適用於客製化自駕車之以路徑追蹤為導向的模擬器
14. 針對具有干擾系統之數位重新設計強健追蹤器:一種整合PID控制、滑模控制與PSO演算法的新方法
15. 具非極小相位系統與非線性干擾之滑動控制器設計:零點配置法