跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李政諺
研究生(外文):Cheng-Yen Lee
論文名稱:快速低溫結晶矽沉積技術開發
論文名稱(外文):The Development of Low Temperature and High Speed Deposition of Crystallized Silicon Films
指導教授:林烱暐
指導教授(外文):Chiung-Wei Lin
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:111
中文關鍵詞:結晶矽
外文關鍵詞:crystalline
相關次數:
  • 被引用被引用:3
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文目的是研究低溫(150℃)快速沉積結晶矽薄膜,來取代傳統的高氫稀釋法。在沉積過程中,以SiH4 : H2 = 1:9的比例下,加入大量的惰性氣體(氬氣)以及功率密度的提升,達到快速沉積速率 (15.6 nm/min)的矽薄膜。而功率密度的提高可使氣體碰撞較為激烈,使形成微晶矽機制中的《蝕刻機制》更加明顯,因此結晶率提升至48.4%,將此高沉積速率的結晶矽薄膜製作成電晶體,最後利用stress來量測此薄膜穩定性的優劣。結果指出薄膜內部結晶率的提升,臨界電壓不易受到長時間偏壓的破壞,位移較小。因此我們成功在低溫、高功率密度的環境下,製作出快速沉積結晶矽薄膜。
In this thesis, the study of crystalline silicon thin film deposited quickly under low temperature (150℃) to replace the traditional deposition method of high hydrogen dilution. During the deposition process, with the ratio of SiH4 : H2 = 1: 9, a large number of inert gas (argon gas) is added and the power density is enhanced in order to deposit silicon thin film at fast deposition rate (15.6 nm / min). The power density enhancing leads to gas collisions more intense, which make the “etching model" more significant during forming microcrystalline silicon mechanism. Therefore, the crystalline fraction is increased to 48.4%. Then this crystalline silicon thin film deposited at high deposition rate is made into transistor and finally the “stress” is used to measure the stability of this thin film transistor. The result indicates when increasing the crystalline fraction of the film interior, the critical voltage will not be easily damaged by long time bias voltage and the shift is small. So we can successfully make the rapid deposition crystallization silicon thin film under the conditions of low temperature and high power density.
CONTENTS
Acknowledgement I
English Abstract II
Chinese Abstract III
Contents IV
Table caption VII
Figure captions VIII

Chapter 1 Preface 1
1.1 Literature review 2
1.2 The fabrication of hydrogenated amorphous silicon thin film 4
1.3 Research purpose 7
1.4 Research method 8
1.5 Thesis structure 9
Chapter 2 Basic Theory 11
2.1 Thin film growth mechanism 11
2.2 Three ways for the formation of the microcrystalline silicon 13
2.3 As to the deposition of the microcrystalline silicon thin film , the
hydrogen atoms have three mechanisms for the thin film crystalline
2.4 The analysis of hydrogen content in hydrogenated amorphous 14
silicon and silicon hydrogen bond by the use of Fourier transform
infrared spectrum 16
2.5 The analysis of the crystal volume ratio of hydrogenated
amorphous silicon and microcrystalline silicon by the use of
Raman spectroscopy 20
2.6 According to the different operating modes and structures,
MOSFET can be divided into four basic types 21
2.7 The basic formulae of Thin Film Transistor 22

Chapter 3 Experiment 28
3.1 Plasma chemical vapor deposition system 28
3.2 Experimental process 29
3.2.1 Glass cleaning 29
3.2.2 Fabrication process of TFT 30
3.3 Instrument introduction 32
3.2.1 α-step 32
3.2.2 Atomic Force Microscope;AFM 32
3.2.3 Scanning Electron Microscope;FESEM 33
3.2.4 Fourier-Transform Infrared Spectrometer; FTIR 33

Chapter 4 Results and Discussion 35
4.1 The effect on deposit rate caused by the added inert gases [such
as helium (He), argon (Ar) 35
4.2 The fabrication of amorphous silicon thin film 37
4.2.1 The properties comparison of the thin film (active layer) at
different temperatures 37
4.2.2 Comparison of electrical properties of thin film (active layer)
at different temperatures 39
4.3 Fabrication of microcrystalline silicon thin film by the traditional
method of high hydrogen dilution 42
4.3.1 Fabrication of microcrystalline silicon thin film transistor by
the method of high hydrogen dilution 42
4.3.2 The destruction to insulation caused by the method of high
hydrogen dilution 44
4.4 Analysis of hydrogen content of the thin film, silicon hydrogen
bonds and crystalline fraction when added plenty of hydrogen 46
4.5 Rapid deposition of the crystallization silicon thin film at low
temperature with high power density 47
4.6 Comparison of electrical property of crystallization silicon
deposited rapidly at high power and low temperature 52

Chapter 5 Conclusion 55

References 56
1. A. J. Snell, K. D. Mackenzie, W. E. Spear, P. G. LeComber and A. J. Hughes: Appl. Phys. 24 (1981) 357.
2. H. Ito, T. Suzuki, Y. Nishihara, Y. Sakai, T. Ozawa and S. Tomiyama: Mater. Res. Soc. Symp. Proc. 95 (1987) 437.
3. L. E. Fenell, M. J. Thompson, H. C. Tuan and R. Weisfield: Conf. Rec. Int. Display Research Conf. (1988) p. 167.
4. R. A. Street, Hydrogen amorphous silicon Cambridge University Press, pp.54-55(1991).
5. Cherie R. Kagan and Paul Andry,Thin-Film Transistors. Marcel Dekker, Inc.,pp.54-55(2003).
6. Kah-Yoong Chan, Member, IEEE, Aad Gordijn, Helmut Stiebig, and Dietmar Knipp, Member, IEEE “Microcrystalline-Silicon Transistors and CMOS Inverters Fabricated Near the Transition to Amorphous-Growth Regime” , IEEE, transactions on electron devices,vol.56,no.9,September 2009.
7. F. Finger, P. Hapke, M. Luysberg, R. Carius, H. Wagner, and M. Scheib, “Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge.”Appl. Phys. Lett.,vol 65, no. 20, pp. 2588-2590, Nov. 1994.
8. H. F. Sterling and R. C. G. Swann, “Chemical vapour deposition promoted by rf discharge”, Solid-State Electronics, Vol.8,pp.653-654 (1965).
9. R. C. Chittick, J. H. Alexander and H. F. Sterling, J. Electronchem. Soc, Vol 116, pp77-81 (1969).
10. W.E Spear and P.G Le Comber, “Investigation of the localised state distribution in amorphous Si films”, Journal of Non-Crystalline Solids , Vol 8-10 , pp727-738 (1972).
11. W.E Spear and P.G Le Comber, “Substitutional doping of amorphous silicon”, Solid state Communication , Vol 17 , pp1193-1196 (1975).
12. Triska, A.,D. Dennison and H. Fritzsche, Bull. Am. Phys. Soc. 20, 392 (1975).
13. Matsuda, A., and K. Tanaka, Thin Solid Films 92, 171 (1982).
14. Robertson, R., D. Hils, H. Catham and A. Gallagher, Appl. Phys. Lett. 43, 54 (1983).
15. 陳治明 “非晶半導體材料與器件” p.61, 1991.
16. C. C. Tsai, G. B. Anderson and R. Thompson, “Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma”, Journal of Non-Crystalline Solids , Vol.137-139 , pp.673-676 (1991).
17. P. Chaudhuri, S. Ray and A. K. Barua, “The effect of mixing hydrogen with silane on the electronic and optical properties of hydrogenated amorphous silane on the electronic and optical properties of hydrogenated amorphous silicon thin films”, Thin Solid Films , Vol.113 , pp.261-270 (1984).
18. D. L. Steabler and C. R. Wronski, ”Reversible conductivity changes in discharge-produced hydrogenated amorphous Si” , Appl. Phys. Lett, Vol.31 , pp.292 (1977).
19. Jiang, Y. L. and C. C. Kuo, proceedings of 1998 IEDMS, Dec. 20-23, Tainan, AP-28,243 (1998a).
20. Jiang, Y. L., M. J. Lee, and S. H. Chen, materials Research Society Symposium Proceedings, Vol. 507,523 (1998b).
21. Jiang, Y. L. et al., proceedings of IEDMS 2002, 20-21, Dec.,2002, Taipei, Taiwan, 511 (2002).
22. L. Guo, M. Kondo, M. Fukawa, K. Saitoh and A. Matsuda, “High rate deposition of microcrystalline silicon using conventional plasma-enhanced chemical vapor deposition”, Jpn. J Appl. Phys, Vol 37,pp1116-1118 (1998).
23. R. Martins, A. Macarico, I. Ferreira, R. Nunes, A. Bicho and E. Fortunato, “Investigation of the amorphous to microcrystalline phase transition of thin Film silicon produced by PECVD”, Thin solid Films, Vol 317, pp144-148 (1998).
24. Chua-Wen Liang, Wen-Chuan Chiang and Ming-Shiann Feng, “Microcrystallinity of Undoped Amorphous Silicon Films and Its Effects on the Transfer Characteristics of Thin-Film Transistors”, Jpn. J. Appl. Phys. Vol. 34, pp. 5943-5948 (1995).
25. K. Kandoussi, C. Simon, N. Coulon, “Nanocrystalline silicon TFT process using silane diluted in argon-hydrogen mixtures ”, Journal of Non-crystalline Solids 354, 2513-2518 (2008).
26. A. A. Longford, M. L. Fleet, Chou and B. P. Nelson, “Infrared Absorption Strength and Hydrogen Content of Hydrogenated Amorphous Silicon ,” Phys. Rev B., Vol. 45, pp.1336-1337 (1992).
27. H. Ishiwara, A. Tamba and S. Furukawa: Appl. Phys. Lett. 48 (1986)
773.
28. R. S. Sussman, A. J. Harris and R. Ogden: J. Non-Cryst. Solid. 35 & 36 (1980) 249.
29. A. Asano: Appl. Phys. Lett. 56 (1990) 533.
30. S. C. Lee: Mater. Chem & Phys. 32 (1992) 273.
31. G. H. Lee, J. H. Yoon, “Role of Hydrogen in the Grain Growth in Microcrystalline Silicon Films” , Mater. Res. Soc. Symp. Proc, 910 (2006).
32. A. Matsuda, “Formation Kinetics and Control of Microcrystalline in
μc- Si:H From Glow Discharge Plasma” , Journal of Non-crystalline
Solids, Vol.59, pp.767 (1983).
33. C. C. Tsai, G. B. Anderson, R. Thompson, B. Wacker , “Control of Silicon Network Structure in Plasma Deposition” , Journal of Non-crystalline Solids, Vol.114,pp.151 (1989).
34. K. Nakamura, K. Yoshida, S. Takeoka, I. Shimizu, “Roles of Atomic Hydrogen in Chemical Annealing” , Jpn. J. Appl. Phys, Vol.34, pp.442 (1995).
35. H. Touir, K. Zellama and J.F. Morhange, Phys. Rev. B, 59 10076.
(1999).
36. C. Manfredotti, F. Fizzotti, M. Boero, P. Pastorino, P. Polesello, and
E. Vittone Phys. Rev. B 50, 18046–18053 (1994).
37. U. Kroll, J. Meier, A. Shah, S. Mikhailov and J. Weber, J. Appl. Phys. 80(9), 1 November 1996.
38. A. VON Keudell and J. R. Abelson Jpn. J. Appl. Phys. Vol. 38 pp.4002–4006 (1999).
39. S. Vignoli a,*, A. Fontcuberta i Morral b, R. Butt_e a,1, R. Meaudre a,M. Meaudre Journal of Non-Crystalline Solids 299–302 220–225 (2002).
40. S. A. McQuaid,a) S. Holgado,b) J. Garrido, J. Martı´nez, and J. Piqueras, J. Appl. Phys. 81 (11), 1 June (1997)
41. Enakshi Bhattacharya and A. H. Mahan Applied Physics Letters Volume 52, Issue 19, pp. 1587-1589 May 9, (1988).
42. Jun Yong Ahn , Koeng Su Lim Journal of Non-Crystalline Solids 351, 748–753 (2005).
43. M. H. Brodsky, M. Cardona and J.J. Cuomo, “infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B, Vol.16, pp.3556-3571 (1977).
44. G. Lucovsky, R. J. Nemanich and J.C. Knights, “Structural interpretation of the vibrational spectra of a-Si:H alloys”, Phys. Rev. B19, pp.2064-2073 (1979).
45. S. Guha and J. Yang, Scott J. Jones, Y. Chan and D. L. Williamson,
Appl. Phys. Lett. 61 (12), 21 Sept.,1992, p1444
46. R. A. Street, “Model for growth of a-Si:H and its alloys”, Phys. Rev., Vol. 44, pp.10610-10616 (1991).
47. Martin Schlosser, Krishna K. Bhuwalka, Martin Sauter, Thomas Zilbauer, Torsten Sulima, and Ignaz Eisele , ” Fringing-Induced Drain Current Improvement in the Tunnel Field-Effect Transistor With High-κ Gate Dielectrics” IEEE transactions on electron devices, Vol. 56, NO. 1, January 2009.
48. 楊世豪 “低溫微晶矽薄膜開發及其薄膜電晶體之應用” 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top