跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林冠中
研究生(外文):Guan-Jhong Lin
論文名稱:漸進式支持向量機於人臉辨識之應用
論文名稱(外文):Sequential Support Vector Machine for Face Recognition
指導教授:簡仁宗簡仁宗引用關係
指導教授(外文):Jen-Tzung Chien
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:78
中文關鍵詞:貝氏支持向量機人臉辨識漸進式學習
外文關鍵詞:BayesianSVMsequential learningface recognition
相關次數:
  • 被引用被引用:23
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:75
  • 收藏至我的研究室書目清單書目收藏:1
有鑑於人臉辨識在生物認證上的重要性日益增加,然而,在實際環境中因光源變化及人臉姿勢之改變,使得人臉辨識率大幅下降,為提昇辨識效能,人臉模型調適已被廣泛地提出來以解決人臉辨識的強健性問題。從循序觀察到的調適樣本中獲得環境變遷資訊來更新人臉模型,調適後的人臉模型可以改善人臉辨識系統。本論文中,提出一套新穎之漸進式學習演算法應用在以支持向量機為主之人臉辨識系統。首先,我們使高斯機率模型來描述支持向量機中參數的統計特性。採用漸進式支持向量機的理由是它不需額外地儲存訓綀樣本,而且也相當容易地更新模型參數。其次,有別於傳統的參數求解準則,一個嶄新的決策法則被提出,此方法也在本論文中證明是符合標準支持向量機的基本精神,也就是以最小化分類錯誤為出發點,達到最大化二個類別輸出值機率分佈之間的距離。將批次和漸進式所獲得之真實人臉影像模型來評估此演算法的性能和其潛在性改進。此漸進式學習演算法應用於人臉模型調適展現其成效。當調適人臉資料量逐漸增加時辨識率也跟著提昇,此外,所提出的方法相較於其它傳統的方法,準確率有顯著地改進。本論文以ORL 及FERET 人臉資料庫的實驗,再利用遞迴貝氏(Recursive Bayes)理論,漸進式地將參數的事後機率更新,用事後機率的平均值向量計算出支持向量機中兩個類別的機率分佈,然後透過機率型的支持向量機做分類決策。
One effective approach is to adapt face models using new data in new environment. This thesis presents a novel sequential learning algorithm for the support vector machine(SVM) based face recognition system. First of all, we use a aussian probability model to represent the randomness of SVM parameters. The recursive Bayes theory is applied to sequentially update a posteriori distribution of SVM parameters. The estimated mean vector is adopted to build the output distribution of SVM. During test phase, we classify a test image according to output distributions of two SVM classes. In this study, we demonstrate that the proposed sequential SVM can meet the standard properties of SVM, or equivalently, minimization of classification errors and maximization of distance of output distributions of two classes. In the experiments on using ORL and FERET facial databases, the proposed sequential SVM did improve face recognition accuracy when increasingly enrolling new face adaptation data.
摘要 4
ABSTRACT 5
章節目錄 7
圖目錄 10
表目錄 11
第 一 章 導論 1
1.1 研究動機 1
1.2 生物特徵辨識 2
1.3 人臉辨識 3
1.4 論文方法簡介 4
1.5 章節簡介 6
第 二 章 相關文獻探討 7
2.1 支持向量機 7
2.1.1 線性可分離 10
2.1.2 線性不可分離 11
2.1.3 非線性可分離 12
2.1.4 資料與SVM 模型間的對應關係 15
2.1.5 SVM 應用在多類別分類 15
2.2 最小平方支持向量機 17
2.2.1 LSSVM 與SVM 的比較 17
2.2.2 LSSVM 與PCA、LDA 間的關係 19
2.3 Sequential minimal optimization 22
2.4 遞增式學習 26
第 三 章 機率型支持向量機 30
3.1 使用貝氏理論解釋SVM 31
3.2 關聯向量機 35
3.3 證據結構用於SVM 37
3.4 漸進式SVM 40
第 四 章 漸進式學習應用於支持向量機 44
4.1 漸進式學習用於SVM 44
4.1.1 超平面參數的更新 45
4.1.2 輸出值的更新 47
4.1.3 漸進式學習演算法 49
4.2 鑑別性分析 54
4.3 SVM 參數調適相關方法之比較 58
第 五 章 實驗 59
5.1 實驗環境 59
5.2 人臉資料庫 59
5.3 實驗結果與比較 61
第 六 章 展示系統 66
6.1 線上人臉辨識系統 66
6.2 離線人臉辨識系統 67
第 七 章 結論及未來研究方向 69
第 八 章 參考文獻 70
[1] H. Alam, F. Rahman, Y. Tarnikova and R. Hartono, “A pair-wise
decision fusion framework: recognition of human faces”,
Proceedings of the sixth International Conference of Information
Fusion, vol. 2, pp. 1484-1489, 2003
[2] J.L. An, Z.O. Wang and Z.P. Ma, “An incremental learning
algorithm for support vector machine”, Proceedings of the Second
International Conference on Machine Learning and Cybernetics, vol.
2, pp. 1153-1156, Nov. 2003
[3] P.N. Bellhumeur, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces vs.
fisherfaces: recognition using class specific linear projection”, IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 7,
pp. 711-720, July 1997
[4] C.J.C. Burges, “A tutorial on support vector machines for pattern
recognition”, Data Mining Knowledge Discovery, 2, pp. 121-167,
1998
[5] R. Cappelli, D. Maio and D. Maltoni, “Subspace adaptation for
incremental face learning”, International Conference on Control,
Automation, Robotics and Vision, vol. 2, pp.974-979, 2-5 Dec. 2002
[6] S. Chen, S.R. Gunn, and C.J. Harris, “The relevance vector machine
technique for channel equalization application”, IEEE Trans. on
Neural Networks, vol. 12, pp. 1529-1532, Nov. 2001
[7] J.T. Chien and C.H. Huang, “Online speaker adaptation based on
quasi-Bayes linear regression”, Proceedings of International
Conference Acoustics, Speech, Signal Processing, vol. 1, pp.
329-332, 7-11 May 2001
[8] J.T. Chien and C.H. Huang, “Bayesian duration modeling and
learning for speech recognition”, Proceedings of International
Conference Acoustics, Speech, Signal Processing, vol. 1, pp. 1005-8,
17-21 May 2004
[9] J.T. Chien and C.H. Huang, “Bayesian learning of speech duration
models”, IEEE Trans. on Speech and Audio Processing, vol. 11,
issue 6, pp. 558-567, Nov. 2003
[10] J.T. Chien, “Quasi-Bayes linear regression for sequential learning of
hidden Markov models”, IEEE Trans. on Speech and Audio
Processing, vol. 10, issue 5, pp. 268-278, July 2002
[11] C. Cortes and V. Vapnik, “Support-vector Networks”, Machine
Learning, vol. 20, pp. 273-297, 1995
[12] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
VectorMachines: Cambridge Univ. Press, 2000
[13] C.P. Diehl and G. Cauwenberghs, “SVM incremental learning,
adaptation and optimization”, Proceedings of the International Joint
Conference on Neural Networks, vol. 4, pp. 2685-2690, July 2003
[14] K. Fukunaga, “Introduction to statistical pattern recognition”,
Academic Press, second edition, 1991
[15] T.V. Gestel, A.J.K. Suykens, G. Lanckriet, A. Lambrechts, B.D.
Moor, and J. Vandewalle, “A Bayesian framework for least squares
support vector mahine classifiers, Gaussian processes and kernel
Fisher discriminant analysis”, Neural Computation, vol. 14, no. 5,
pp. 1115-1147, 2002
[16] T.V. Gestel, J.A.K. Suykens, D.-E. Baestaens, A. Lambrechts, G.
Lanckriet, B. Vandaele, B.D. Moor and J. Vandewalle, “Financial
time series prediction using least squares support vector machines
within the evidence framework”, IEEE Trans. on Neural Networks,
vol. 12, pp. 809-821, July 2001
[17] W. Huang, B.H. Lee, L. Li and K. Leman, “Face recognition by
incremental learning”, IEEE International Conference on System,
Man and Cybernetics, vol. 5, pp. 4718-4723, 5-8 Oct. 2003
[18] Q.-C. Joaquin and L. K. Hansen, “Time series prediction based on
the relevance vector machine with adaptive kernels”, Proceeding of
IEEE International Conference Acoustics, Speech, Signal Processing,
vol. 1, pp. 13-17, 2002
[19] I.T. Jolliffe, Principal Component Analysis, ser. Springer Series in
Statistics. New-Tork: Springer-Verlag, 1986
[20] S.S. Keerthi and E.G. Gilbert, “Convergence of a generalized SMO
algorithm for SVM classifier design”, Machine Learning, vol. 46, pp.
351-360, 2002
[21] S.S. Keerthi and S.K. Shevade, “SMO Algorithm for least square
SVM”, Proceedings of the International Joint Conference on Neural
Networks, vol. 3, pp. 2088-2093, 20-24 July 2003
[22] K.I. Kim, K. Jung, S.H. Park and H.J. Kim, “Support vector
machines for texture classification”, IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 24, no. 11, pp. 1542-1550,
Nov. 2002
[23] B.J.D. Kruif and T.J.A.D. Vries, “Pruning error minimization in least
squares support vector machines”, IEEE Trans. on Neural Networks,
vol. 4, no. 3, pp. 696-702, May 2003
[24] J.T. Kwok, “Moderating the output of support vector classifiers”,
IEEE Trans. on Neural Networks, vol. 10, pp. 1018-1031, Sep. 1999
[25] J.T. Kwok, “The evidence framework applied to support vector
machine”, IEEE Trans. on Neural Networks, vol. 11, pp.1162-1173,
Sep. 2000
[26] G.R.G. Lanckriet, L.E. Ghaoui, C. Bhattacharyya, and M.I. Jordan,
“A robust minimax approach to classification”, Machine Learning
Research 3, pp. 555-582, 2002
[27] C.P. Liao, H.J. Lin, C.C. Huang and J.T. Chien, “Multiple human
face detection in complex background”, Proceedings of 2002
Computer Graphics Workgroup, Tainan-Taiwan, June 2002
[28] D.J.C. Mackay, “Bayesian Interpolation”, Neural Computation, vol.
4, no. 3, pp. 415-447, May 1992
[29] D.J.C. Mackay, “The evidence framework applied to classification
networks”, Neural Computation, vol. 4, no. 4, pp. 720-736, Sep.
1992
[30] A.M. Martinez, and A.C. Kak, “PCA versus LDA”, IEEE Trans. on
Pattern Analysis and Machine Itelligence, vol. 23, pp. 228-233, Feb.
2001
[31] R. Mitra, C.A. Murthy and S.K. Pal, “Data condensation in large
database by incremental learning with support vector machines”,
International Conference on Pattern Recognition, Sept. 2000
[32] J.C Platt, “Sequential minimal optimization: a fast algorithm for
training support vector machines”, Technical Report MSR-TR-98-14,
Microsoft Research, Redmond
[33] S. Rüping, “Incremental learning with support vector machines”,
proceedings of the IEEE International Conference on Data Mining,
2001
[34] B. Schölkopf, K. Sung, C.J.C. Burges, F. Girosi, P. Niyogi, T. Pogio
and V. Vapnik, “Comparing support vector machines with Gaussian
kernels to radial basis function classifiers”, IEEE Trans. on Signal
Processing, vol. 45, no. 11, pp. 2758-2765, 1997
[35] J.A.K. Suykens and J. Vandewalle, “Least square support vector
machine classifiers”, Neural Process Letters, pp. 293-300, 1999
[36] J.A.K. Suykens, J. de Brabanter, L. Lukas, and J. Vandewalle,
“Weighted least squares support vector machines: Robustness and
sparse approximation”, Neural computation, 2002,
[37] J.A.K. Suykens, T.V. Gestel, J. Vandewalle, and B.D. Moor, “A
support vector machine formulation to PCA analysis and its kernel
version”, IEEE Trans. on Neural Network, vol.14, no. 2, pp. 447-450,
Mar. 2003
[38] N. Takahashi and T. Nishi, “Rigorous proof of termination of SMO
algorithm for support vector machines”, IEEE Trans. on Neural
Networks, vol. 16, no. 3, pp. 774-776, May 2005
[39] M.E. Tipping, “Sparse Bayesian learning and the relevance vector
machine”, in Advances in Neural Information Processing Systems 12,
Pages 652-658, MIT Press, 2000
[40] M.E. Tipping, “Sparse Bayesian learning and the relevance vector
machine”, Machine Learning Research 1, pp.211-244, 2001
[41] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998
[42] V. Vapnik, The nature of statistical learning theory, New-York:
Springer-Verlag, 1995
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top