跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭迪曼
研究生(外文):Khotibul Umam
論文名稱:面臨低張逆境時虱目魚鰓上熱休克蛋白可能具有滲透壓保護功能
論文名稱(外文):The potential osmoprotective roles of branchial heat shock proteins in milkfish upon hypotonic challenge
指導教授:李宗翰李宗翰引用關係湯政豪
指導教授(外文):Tsung-Han LeeCheng-Hao Tang
口試委員:耿全福蔡志明黃永森
口試委員(外文):Chuian-Fu KenJyh-Ming TsaiYung-Sen Huang
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學院碩士在職專班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:76
中文關鍵詞:虱目魚面臨低張逆境時鰓上熱休克蛋白 可能具有滲透壓保護反應
外文關鍵詞:heat shock proteinmilkfishhypotonic challenge
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
The present study investigated the HSPs expression induced by hypotonic stress in gills of euryhaline milkfish. Since heat shock response is a predominant cellular stress response, two of its major components, heat shock protein 70 (HSP70) and 90 were examined in this study. Four hsp genes were first identified from the transcriptome database, divided into inducible (hsp under stress) and constitutive (hsp unstressed) forms. The alignment and phylogenetic analysis of the sequences revealed the four hsps (mfhsp) groups of milkfish, including mfhsp70, mfhsc70, mfhsp90α, and mfhsp90β. In addition, the mRNA and protein expression were examined through seawater (SW; 35‰) and freshwater (FW) acclimation experiments (> 1 month) and time-course (short term) experiments by direct transfer from SW to FW. In acclimation experiments, although the mRNA abundance of gill hsc70 of the FW-acclimated group was similar to that of the SW-acclimated group, gill hsp70 of the FW group was significantly higher (5.9 folds) than the SW group. Meanwhile, the mRNA abundacne of gill hsp90α of FW milkfish was slightly higher (1.5 folds) compared to the SW group, while the mRNA abundance of hsp90β was not different between the two groups. At the protein level, the abundance of HSP70 and HSP90 of milkfish gills were significantly higher (2.8 and 2.5 folds, respectively) in FW rather than in SW. On the other hand, analysis of gill hsp genes expression in short-term experiments revealed that gills hsc70 mRNA abundance increased within 3 hrs and declined gradually to 168 hrs. However, mRNA amounts of hsp70 and hsp90α rapidly increased at the first 3 hrs post-transfer (16 and 5.8 fold, respectively). Compared to the control group, the hsp90α showed significant increase at 168 hrs post-transfer, whereas hsp90β was not changed. The immunoblots revealed that relative abundance of gill HSP70 was significantly increased at 3 and 24 hrs post-transfer (about 4.3 and 3 folds, respectively). Relatvie protein amounts of the HSP90, however, were not significantly different even though the expression was still higher about 1.7 fold at 3 hrs post-transfer. The interaction between HSP70/90 and Na+, K+-ATPase (NKA), demonstrated by immunoprecipitation, indicated that increasing expression of gill HSPs might protect misfolded or abnormal NKA due to hypotonic stress of the milkfish. Taken together, our findings revealed that four hsps of milkfish displayed different patterns upon hypotonic stress. Higher expression of HSPs demonstrated that inducible HSP70/90 were more efficient in responses to hypotonic stress. The interaction between HSP70/90 and NKA further illustrated the involvement of HSPs in osmoprotective roles for maintaining cellular homeostasis of milkfish gills under hypotonic stress.

ACKNOWLEDGMENT i
Abstract ii
Contents iv
1. Introduction 1
1.1 Environmental stresses to organisms 1
1.2 Fish responses to environmental stresses 1
1.3 Impact of salinity on osmoregulatory organs 3
1.4 Roles of stress proteins in fish 4
1.5 Euryhaline teleosts and milkfish (Chanos chanos) 5
1.6 The aims of the study 6
2. Material and Methods 8
2.1 Experimental fish and environments 8
2.2 RNA extraction and reverse transcription 8
2.3 Molecular cloning of hsps 9
2.4 Phylogenetic tree 9
2.5 Molecular model prediction 11
2.6 Real-time PCR 11
2.7 Antibodies 11
2.8 Gill homogenates 12
2.9 Immunoblotting 13
2.10 Co-immunoprecipitation 14
2.11 Statistical analyses 14
3. Results 15
3.1 Sequence characterization and phylogenetic tree of hsps 15
3.2 Acclimation experiments of milkfish 16
3.3 Time-course experiments of milkfish 16
3.4 Interaction between HSP70/90 and NKA in milkfish gills 18
4. Discussion 19
4.1 Characterization of heat shock proteins in the milkfish 19
4.2 Expression of HSPs in acclimation to environmental stresses 23
4.3 Time-course changes in gill HSPs upon hypotonic challenge 27
4.4 Interaction of HSP70/90 and NKA in milkfish gills 31
5. References 33
6. Tables and Figures 50
7. Appendix 75


Ali, K. S., Dorgai, L., Ábrahám, M., & Hermesz, E. (2003). Tissue-and stressor-specific differential expression of two hsc70 genes in carp.Biochemical and Biophysical Research Communications, 307(3), 503-509.
Ali A, Krone PH, Pearson DS, Heikkila JJ (1996). Evaluation of stress-inducible hsp90 gene expression as a potential molecular biomarker in Xenopus laevis. Cell Stress. Chaperones;1:62e9.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410.
Arai, A., Mitani, H., Naruse, K., & Shima, A. (1994). Relationship between the induction of proteins in the HSP70 family and thermosensitivity in two species of Oryzias (Pisces). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 109(4), 647-654.
Bagarinao, T. (1994). Systematics, distribution, genetics and life history of milkfish, Chanos chanos. Environmental biology of fishes, 39(1), 23-41.
Barton, B. A. (2002). Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and comparative biology, 42(3), 517-525.
Barton, B. A., Morgan, J. D., Vijayan, M. M., & Adams, S. M. (2002). Physiological and condition-related indicators of environmental stress in fish.Biological indicators of aquatic ecosystem stress, 111-148.
Basu N, Kennedy CJ, Hodson PV, Iwama GK. (2001). Altered stress responses in rainbow trout following a dietary administration of cortisol and b-napthoflavone. Fish Physiol Biochem 25:131.140.
Basu, N., Todgham, A. E., Ackerman, P. A., Bibeau, M. R., Nakano, K., Schulte, P. M., & Iwama, G. K. (2002). Heat shock protein genes and their functional significance in fish. Gene, 295(2), 173-183.
Boone, A. N., & Vijayan, M. M. (2002). Constitutive heat shock protein 70 (HSC70) expression in rainbow trout hepatocytes: effect of heat shock and heavy metal exposure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 132(2), 223-233.
Buchner, J. (1996). Supervising the fold: functional principles of molecular chaperones. The FASEB journal, 10(1), 10-19.
Cara, J. B., Aluru, N., Moyano, F. J., & Vijayan, M. M. (2005). Food-deprivation induces HSP70 and HSP90 protein expression in larval gilthead sea bream and rainbow trout. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 142(4), 426-431.
Chen, B., Piel, W. H., Gui, L., Bruford, E., & Monteiro, A. (2005). The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics, 86(6), 627-637.
Chen, B., Zhong, D., & Monteiro, A. (2006). Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms.BMC genomics, 7(1), 1.
Chen, Y. M., Kuo, C. E., Wang, T. Y., Shie, P. S., Wang, W. C., Huang, S. L., ... & Chen, T. Y. (2010). Cloning of an orange-spotted grouper Epinephelus coioides heat shock protein 90AB (HSP90AB) and characterization of its expression in response to nodavirus. Fish & shellfish immunology, 28(5), 895-904.
Cheng, S. Y., & Chen, J. C. (1998). Effects of nitrite exposure on the hemolymph electrolyte, respiratory protein and free amino acid levels and water content of Penaeus japonicus. Aquatic Toxicology, 44(1), 129-139.
Choe, K., & Strange, K. (2008). Volume regulation and osmosensing in animal cells. Osmotic and Ionic Regulation: Cells and Animals, 37-68.
Choi, C. Y., & An, K. W. (2008). Cloning and expression of Na+/K+-ATPase and osmotic stress transcription factor 1 mRNA in black porgy, Acanthopagrus schlegeli during osmotic stress. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 149(1), 91-100.
Clark, M. S., Fraser, K. P., Burns, G., & Peck, L. S. (2008). The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus. Polar Biology,31(2), 171-180.
Clark, M. S. and L. S. Peck (2009). HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: A mini-review. Mar Genomics 2(1): 11-18.
Deane, E. E., Kelly, S. P., Luk, J. C., & Woo, N. Y. (2002). Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Marine biotechnology, 4(2), 193-205.
Deane, E. E., & Woo, N. Y. (2004). Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(5), R1054-R1063.
Deane, E. E., & Woo, N. Y. (2005). Cloning and characterization of the hsp70 multigene family from silver sea bream: modulated gene expression between warm and cold temperature acclimation. Biochemical and biophysical research communications, 330(3), 776-783.
Deane, E. E. and N. Y. Woo (2006). Impact of heavy metals and organochlorines on hsp70 and hsc70 gene expression in black sea bream fibroblasts. Aquat Toxicol 79(1): 9-15.
Deane, E. E., & Woo, N. Y. (2011). Advances and perspectives on the regulation and expression of piscine heat shock proteins. Reviews in Fish Biology and Fisheries, 21(2), 153-185.
Dietz, T. J. (1994). Acclimation of the threshold induction temperatures for 70-kDa and 90-kDa heat shock proteins in the fish Gillichthys mirabilis. The Journal of experimental biology 188(1): 333-338.
Ding, Z., Wu, J., Su, L., Zhou, F., Zhao, X., Deng, W., ... & Liu, H. (2013). Expression of heat shock protein 90 genes during early development and infection in Megalobrama amblycephala and evidence for adaptive evolution in teleost. Developmental & Comparative Immunology, 41(4), 683-693.
Dong, Y., Dong, S., & Meng, X. (2008). Effects of thermal and osmotic stress on growth, osmoregulation and Hsp70 in sea cucumber (Apostichopus japonicus Selenka). Aquaculture, 276(1), 179-186.
Donaldson, M. R., Cooke, S. J., Patterson, D. A., & Macdonald, J. S. (2008). Cold shock and fish. Journal of Fish Biology, 73(7), 1491-1530.
Dwornczak, B., & Mirault, M. E. (1987). Structure and expression of a human gene coding for a 71 kd heat shock ‘cognate’protein. Nucleic acids research, 15(13), 5181-5197.
Edwards, S. L., & Marshall, W. S. (2013). Principles and patterns of osmoregulation and euryhalinity in fishes. Fish Physiology, 32, 1-44.
Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological reviews, 85(1), 97-177.
Evans, T. G., Belak, Z., Ovsenek, N., & Krone, P. H. (2009). Heat shock factor 1 is required for constitutive Hsp70 expression and normal lens development in embryonic zebrafish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(1), 131-140.
Fangue, N. A., Hofmeister, M., & Schulte, P. M. (2006). Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. Journal of Experimental Biology,209(15), 2859-2872.
Fedoroff, N. (2006). Redox regulatory mechanisms in cellular stress responses. Annals of Botany, 98(2), 289-300.
Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual review of physiology, 61(1), 243-282.
Ferraris, R. P., Almendras, J. M., & Jazul, A. P. (1988). Changes in plasma osmolality and chloride concentration during abrupt transfer of milkfish (Chanos chanos) from seawater to different test salinities. Aquaculture, 70(1-2), 145-157.
Fink, A. L., & Goto, Y. (1998). Molecular chaperones in the life cycle of proteins. Marcel Dekker.
Fiol, D. F., & Kültz, D. (2007). Osmotic stress sensing and signaling in fishes. Febs Journal, 274(22), 5790-5798.
Fishelson, Z., Hochman, I., Greene, L. E., & Eisenberg, E. (2001). Contribution of heat shock proteins to cell protection from complement-mediated lysis. International immunology, 13(8), 983-991.
Foscarini, R. (1989). Induction and development of bacterial gill disease in the eel (Anguilla japonica) experimentally infected with Flexibacter columnaris: pathological changes in the gill vascular structure and in cardiac performance. Aquaculture, 78(1), 1-20.
Franzellitti, S. and E. Fabbri (2005). Differential HSP70 gene expression in the Mediterranean mussel exposed to various stressors. Biochem Biophys Res Commun 336(4): 1157-1163.
Freeman, B. C., & Morimoto, R. I. (1996). The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. The EMBO Journal, 15(12), 2969.
Gamperl, A. K., Vijayan, M. M., & Boutilier, R. G. (1994). Experimental control of stress hormone levels in fishes: techniques and applications.Reviews in Fish Biology and Fisheries, 4(2), 215-255.
Gething M.J. & Sambrook J. (1992) Protein folding in the cell. Nature 355, 35–45.
Giri, S. S., Sen, S. S., & Sukumaran, V. (2014). Role of HSP70 in cytoplasm protection against thermal stress in rohu, Labeo rohita. Fish & shellfish immunology, 41(2), 294-299.
Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895–899
Graser, R. T., Malnar-Dragojevic, D., & Vincek, V. (1996). Cloning and characterization of a 70 kd heat shock cognate (hsc70) gene from the zebrafish (Danio rerio). Genetica, 98(3), 273-276.
Gupta, R. S., & Singh, B. (1994). Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus.Current Biology, 4(12), 1104-1114.
Hightower, L. E. (1991). Heat shock, stress proteins, chaperones, and proteotoxicity. Cell, 66(2), 191-197.
Hofmann, G. E., Buckley, B. A., Airaksinen, S., Keen, J. E., & Somero, G. N. (2000). Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae). Journal of Experimental Biology, 203(15), 2331-2339.
Hunt, C., & Morimoto, R. I. (1985). Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proceedings of the National Academy of Sciences, 82(19), 6455-6459.
Hwang, P. P., Lee, T. H., & Lin, L. Y. (2011). Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301(1), R28-R47.
Iwama GK, Afonso LOB, Vijayan MM. 2006. Stress in fishes. In: Evans DH, Claiborne JB, editors. The physiology of fishes. Boca Raton, FL: CRC Press. p 319–335.
Iwama, G. K., Afonso, L. O., Todgham, A., Ackerman, P., & Nakano, K. (2004). Are hsps suitable for indicating stressed states in fish?. Journal of Experimental Biology, 207(1), 15-19.
Iwama, G. K., Thomas, P. T., Forsyth, R. B., & Vijayan, M. M. (1998). Heat shock protein expression in fish. Reviews in Fish Biology and Fisheries,8(1), 35-56.
Iwama, G. K., Vijayan, M. M., Forsyth, R. B., & Ackerman, P. A. (1999). Heat shock proteins and physiological stress in fish. American Zoologist,39(6), 901-909.
Jing, J., Liu, H., Chen, H., Hu, S., Xiao, K., & Ma, X. (2013). Acute effect of copper and cadmium exposure on the expression of heat shock protein 70 in the Cyprinidae fish Tanichthys albonubes. Chemosphere, 91(8), 1113-1122.
Kalujnaia, S., Osborne, C. J., & Cramb, G. (2010). Organic osmolytes and their role in adaptation of European eel Anguilla anguilla to high salinity environments. The FASEB Journal, 24(1 Supplement), 817-2.
Kang, C. K., Chen, Y. C., Chang, C. H., Tsai, S. C., & Lee, T. H. (2015). Seawater-acclimation abates cold effects on Na+, K+-ATPase activity in gills of the juvenile milkfish, Chanos chanos. Aquaculture, 446, 67-73.
Kayhan, F. E., & Duman, B. S. (2010). Heat shock protein genes in fish.Turkish Journal of Fisheries and Aquatic Sciences, 10(2).
Kelly, S. P., & Woo, N. Y. (1999). Cellular and biochemical characterization of hyposmotic adaptation in a marine teleost, Sparus sarba. Zoological science, 16(3), 505-514.
Kodiha M, Chu A, Lazrak O, Stochaj U. 2005. Stress inhibits nucleocytoplasmic shuttling of heat shock protein hsc70. Am. J. Physiol. Cell Physiol ., 289 (4): 1 034-1 041.
Kothary, R. K., Jones, D. O. N. A. L. D., & Candido, E. P. (1984). 70-Kilodalton heat shock polypeptides from rainbow trout: characterization of cDNA sequences. Molecular and cellular biology, 4(9), 1785-1791.
Krone, P. H., & Sass, J. B. (1994). Hsp 90α and hsp 90β genes are present in the zebrafish and are differentially regulated in developing embryos.Biochemical and biophysical research communications, 204(2), 746-752.
Kultz, D. (1996). Plasticity and stressor specificity of osmotic and heat shock responses of Gillichthys mirabilis gill cells.American Journal of Physiology-Cell Physiology, 271(4), C1181-C1193.
Kültz, D., Madhany, S., & Burg, M. B. (1998). Hyperosmolality causes growth arrest of murine kidney cells induction of GADD45 and GADD153 by osmosensing via stress-activated protein kinase 2. Journal of Biological Chemistry, 273(22), 13645-13651.
Larsen, P. F., Nielsen, E. E., Meier, K., Olsvik, P. A., Hansen, M. M., & Loeschcke, V. (2012). Differences in salinity tolerance and gene expression between two populations of Atlantic cod (Gadus morhua) in response to salinity stress. Biochemical Genetics, 50(5-6), 454-466.
LeBlanc, S., Höglund, E., Gilmour, K. M., & Currie, S. (2012). Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302(1), R184-R192.
Lees-Miller, S. P., & Anderson, C. W. (1989). The human double-stranded DNA-activated protein kinase phosphorylates the 90-kDa heat-shock protein, hsp90 alpha at two NH2-terminal threonine residues. Journal of biological chemistry, 264(29), 17275-17280.
Lele, Z., Hartson, S. D., Martin, C. C., Whitesell, L., Matts, R. L., & Krone, P. H. (1999). Disruption of zebrafish somite development by pharmacologic inhibition of Hsp90. Developmental biology, 210(1), 56-70.
Lim, E. H., & Brenner, S. (1999). Short-range linkage relationships, genomic organisation and sequence comparisons of a cluster of five HSP70 genes in Fugu rubripes. Cellular and Molecular Life Sciences CMLS, 55(4), 668-678.
Lin, Y.M., Chen, C.N., Yoshinaga, T., Tsai, S.C., Shen, I.D., Lee, T.H., (2006). Short-termeffects of hyposmotic shock on Na+/K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comp. Biochem. Physiol. A 143, 406–415.
Lindquist, S., & Craig, E. A. (1988). The heat-shock proteins. Annual review of genetics, 22(1), 631-677.
Liu, H., Chen, H., Jing, J., & Ma, X. (2012). Cloning and characterization of the HSP90 beta gene from Tanichthys albonubes Lin (Cyprinidae): effect of copper and cadmium exposure. Fish physiology and biochemistry, 38(3), 745-756.
Liu, T., Pan, L., Cai, Y., & Miao, J. (2015). Molecular cloning and sequence analysis of heat shock proteins 70 (HSP70) and 90 (HSP90) and their expression analysis when exposed to benzo (a) pyrene in the clam Ruditapes philippinarum. Gene, 555(2), 108-118.
López-Maury, L., Marguerat, S., & Bähler, J. (2008). Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation.Nature Reviews Genetics, 9(8), 583-593.
J.C. Luft, M.R. Wilson, J.E. Bly, N.W. Millar, L.W. Clem (1996). Identification and characterization of a heat shock protein 70 family member in channel catfish (Ictalurus punctatus), Comp. Biochem. Physiol. B 113 169–174.
Lund, S. G., Ruberté, M. R., & Hofmann, G. E. (2006). Turning up the heat: the effects of thermal acclimation on the kinetics of hsp70 gene expression in the eurythermal goby, Gillichthys mirabilis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143(4), 435-446.
Manchado, M., Infante, C., Rebordinos, L., & Cañavate, J. P. (2009). Molecular characterization, gene expression and transcriptional regulation of thyroid hormone receptors in Senegalese sole. General and comparative endocrinology, 160(2), 139-147.
Marshall, W. S., Emberley, T. R., Singer, T. D., Bryson, S. E., & McCormick, S. D. (1999). Time course of salinity adaptation in a strongly euryhaline estuarine teleost, Fundulus heteroclitus: a multivariable approach.Journal of Experimental Biology, 202(11), 1535-1544.
Martin CC, Tang P, Barnardo G, Krone PH (2001) Expression of the chaperonin 10 gene during zebrafish development. Cell Stress Chaperones 6:38–43
Ming, J., Xie, J., Xu, P., Liu, W., Ge, X., Liu, B., ... & Pan, L. (2010). Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih). Fish & shellfish immunology, 28(3), 407-418.
Misra, S., Zafarullah, M., Price-Haughey, J., & Gedamu, L. (1989). Analysis of stress-induced gene expression in fish cell lines exposed to heavy metals and heat shock. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1007(3), 325-333.
Molina, A., Biemar, F., Müller, F., Iyengar, A., Prunet, P., Maclean, N., & Muller, M. (2000). Cloning and expression analysis of an inducible HSP70 gene from tilapia fish. FEBS letters, 474(1), 5-10.
Moore, S. K., Kozak, C., Robinson, E. A., Ullrich, S. J., & Appella, E. (1989). Murine 86-and 84-kDa heat shock proteins, cDNA sequences, chromosome assignments, and evolutionary origins. Journal of Biological Chemistry, 264(10), 5343-5351.
Morgan, J. D., & Iwama, G. K. (1991). Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow and steelhead trout (Oncorhynchus mykiss) and fall chinook salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 48(11), 2083-2094.
Morimoto, R. I. (1998). Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes & development, 12(24), 3788-3796.
Morimoto, R. I., & Santoro, M. G. (1998). Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nature biotechnology, 16(9), 833-838.
Mu, W., Wen, H., Li, J., & He, F. (2013). Cloning and expression analysis of a HSP70 gene from Korean rockfish (Sebastes schlegeli). Fish & shellfish immunology, 35(4), 1111-1121.
Nakano, K., Tagawa, M., Takemura, A., & Hirano, T. (1997). Effects of ambient salinities on carbohydrate metabolism in two species of tilapia Oreochromis mossambicus and O. niloticus. Fisheries science, 63(3), 338-343.
Nakano K, Iwama GK (2002) The 70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: relationship of hsp70 and thermal tolerance. Comp Biochem Physiol A 133:79–94
Nakano, K., Tagawa, M., Takemura, A., & Hirano, T. (1998). Temporal changes in liver carbohydrate metabolism associated with seawater transfer in Oreochromis mossambicus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 119(4), 721-728.
Ohtsuka, K., & Suzuki, T. (2000). Roles of molecular chaperones in the nervous system. Brain research bulletin, 53(2), 141-146.
Padmini, E. (2010). Physiological adaptations of stressed fish to polluted environments: role of heat shock proteins. Rev Environ Contam Toxicol 206: 1-27.
Padmini, E., & Sudha, D. (2004). Environmental impact on gill mitochondrial function in Mugil cephalus. Aquacult, 5(1), 89-92.
Padmini, E., & Rani, M. U. (2009b). Evaluation of oxidative stress biomarkers in hepatocytes of grey mullet inhabiting natural and polluted estuaries.Science of the total environment, 407(15), 4533-4541.
Palmisano, A. N., Winton, J. R., & Dickhoff, W. W. (1999). Sequence features and phylogenetic analysis of the stress protein hsp90α in chinook salmon (Oncorhynchus tshawytscha), a poikilothermic vertebrate.Biochemical and biophysical research communications, 258(3), 784-791.
Palmisano, A. N., Winton, J. R., & Dickhoff, W. W. (2000). Tissue-specific induction of Hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge. Marine Biotechnology, 2(4), 329-338.
Pan, F., Zarate, J. M., Tremblay, G. C., & Bradley, T. M. (2000). Cloning and characterization of salmon hsp90 cDNA: upregulation by thermal and hyperosmotic stress. Journal of Experimental Zoology, 287(3), 199-212.
Panaretou, B., Prodromou, C., Roe, S. M., O''Brien, R., Ladbury, J. E., Piper, P. W., & Pearl, L. H. (1998). ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. The EMBO journal,17(16), 4829-4836.
Pineda, M. C., Turon, X., & López-Legentil, S. (2012). Stress levels over time in the introduced ascidian Styela plicata: the effects of temperature and salinity variations on hsp70 gene expression. Cell Stress and Chaperones,17(4), 435-444.
Place, S. P. and G. E. Hofmann (2004). Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish. Polar Biology 28(4): 261-267.
Place, S. P. and G. E. Hofmann (2005). Comparison of Hsc70 orthologs from polar and temperate notothenioid fishes: differences in prevention of aggregation and refolding of denatured proteins. Am J Physiol Regul Integr Comp Physiol 288(5): R1195-1202.
Playle, R. C., & Wood, C. M. (1989). Water chemistry changes in the gill micro-environment of rainbow trout: experimental observations and theory. Journal of Comparative Physiology B, 159(5), 527-537.
Prodromou, C., Roe, S. M., O''Brien, R., Ladbury, J. E., Piper, P. W., & Pearl, L. H. (1997). Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell, 90(1), 65-75.
Riordan, M., Sreedharan, R., Wang, S., Thulin, G., Mann, A., Stankewich, M., ... & Siegel, N. J. (2005). HSP70 binding modulates detachment of Na-K-ATPase following energy deprivation in renal epithelial cells. American Journal of Physiology-Renal Physiology, 288(6), F1236-F1242.
Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 18(12), 571-573.
Roberts, R. J., et al. (2010). Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J Fish Dis 33(10): 789-801.
Rohde, M., Daugaard, M., Jensen, M. H., Helin, K., Nylandsted, J., & Jäättelä, M. (2005). Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes & development, 19(5), 570-582.
Rosa, R., Pimentel, M. S., Boavida-Portugal, J., Teixeira, T., Trübenbach, K., & Diniz, M. (2012). Ocean warming enhances malformations, premature hatching, metabolic suppression and oxidative stress in the early life stages of a keystone squid. PLoS One, 7(6), e38282.
Ruete, M. C., Carrizo, L. C., & Vallés, P. G. (2008). Na+/K+-ATPase stabilization by Hsp70 in the outer stripe of the outer medulla in rats during recovery from a low-protein diet. Cell Stress and Chaperones, 13(2), 157-167.
Sanders, B. M. (1993). Stress proteins in aquatic organisms: an environmental perspective. Critical reviews in toxicology, 23(1), 49-75.
Sangiao-Alvarellos, S., Laiz-Carrión, R., Guzmán, J. M., del Río, M. P. M., Miguez, J. M., Mancera, J. M., & Soengas, J. L. (2003). Acclimation of S. aurata to various salinities alters energy metabolism of osmoregulatory and nonosmoregulatory organs. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 285(4), R897-R907.
Santacruz, H., Vriz, S., & Angelier, N. (1997). Molecular characterization of a heat shock cognate cDNA of zebrafish, hsc70, and developmental expression of the corresponding transcripts. Developmental genetics, 21(3), 223-233.
Schlesinger, M. J., Ashburner, M., & Tissières, A. (1982). Heat shock, from bacteria to man. Cold Spring Harbor Laboratory.
Silver, J. T., & Noble, E. G. (2012). Regulation of survival gene hsp70. Cell Stress and Chaperones, 17(1), 1-9.
Smith, T. R., Tremblay, G. C., & Bradley, T. M. (1999). Characterization of the heat shock protein response of Atlantic salmon (Salmo salar). Fish Physiology and Biochemistry, 20(3), 279-292.
Soengas, J. L., Aldegunde, M., & Andrés, M. D. (1995). Gradual transfer to sea water of rainbow trout: effects on liver carbohydrate metabolism. Journal of Fish Biology, 47(3), 466-478.
S?rensen, J. G., & Loeschcke, V. (2007). Studying stress responses in the post-genomic era: its ecological and evolutionary role. Journal of biosciences, 32(3), 447-456.
Spees, J. L., Chang, S. A., Snyder, M. J., & Chang, E. S. (2002). Osmotic induction of stress-responsive gene expression in the lobster Homarus americanus. The Biological Bulletin, 203(3), 331-337.
Subbarao Sreedhar, A., Kalmár, É., Csermely, P., & Shen, Y. F. (2004). Hsp90 isoforms: functions, expression and clinical importance. FEBS letters, 562(1-3), 11-15.
Sung, Y. Y., Liew, H. J., Bolong, A., Munafi, A., Wahid, A., Effendy, M., & MacRae, T. H. (2014). The induction of Hsp70 synthesis by non‐lethal heat shock confers thermotolerance and resistance to lethal ammonia stress in the common carp, Cyprinus carpio (Linn). Aquaculture Research, 45(10), 1706-1712.
Taleb, M., Brandon, C. S., Lee, F. S., Lomax, M. I., Dillmann, W. H., & Cunningham, L. L. (2008). Hsp70 inhibits aminoglycoside-induced hair cell death and is necessary for the protective effect of heat shock. Journal of the Association for Research in Otolaryngology, 9(3), 277-289.
Tang, C. H., & Lee, T. H. (2013). Early response of protein quality control in gills is associated with survival of hypertonic shock in Mozambique tilapia.PloS one, 8(5), e63112.
Tang, C. H., Leu, M. Y., Yang, W. K., & Tsai, S. C. (2014). Exploration of the mechanisms of protein quality control and osmoregulation in gills of Chromis viridis in response to reduced salinity. Fish physiology and biochemistry, 40(5), 1533-1546.
Tang, C. H., Tzeng, C. S., Hwang, L. Y., & Lee, T. H. (2009). Constant muscle water content and renal HSP90 expression reflect osmotic homeostasis in euryhaline teleosts acclimated to different environmental salinities. Zoological Studies, 48(4), 435-441.
Teigen, L. E., Orczewska, J. I., McLaughlin, J., & O’Brien, K. M. (2015). Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 188, 139-147.
Theodoraki, M. A., & Mintzas, A. C. (2006). cDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata. Insect molecular biology, 15(6), 839-852.
Tiligada, E. (2006). Chemotherapy: induction of stress responses.Endocrine-Related Cancer, 13(Supplement 1), S115-S124.
Tine, M., Bonhomme, F., McKenzie, D. J., & Durand, J. D. (2010). Differential expression of the heat shock protein Hsp70 in natural populations of the tilapia, Sarotherodon melanotheron, acclimatised to a range of environmental salinities. BMC ecology, 10(1), 1.
Trübenbach, K., Teixeira, T., Diniz, M., & Rosa, R. (2013). Hypoxia tolerance and antioxidant defense system of juvenile jumbo squids in oxygen minimum zones. Deep Sea Research Part II: Topical Studies in Oceanography, 95, 209-217.
Valkova, N., & Kültz, D. (2006). Constitutive and inducible stress proteins dominate the proteome of the murine inner medullary collecting duct-3 (mIMCD3) cell line. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1764(6), 1007-1020.
Vijayan, M., Morgan, J., Sakamoto, T. Grau, E., & Iwama, G. (1996). Food-deprivation affects seawater acclimation in tilapia: hormonal and metabolic changes. The Journal of experimental biology, 199(11), 2467-2475.
Vijayan, M. M., Takemura, A., & Mommsen, T. P. (2001). Estradiol impairs hyposmoregulatory capacity in the euryhaline tilapia, Oreochromis mossambicus. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281(4), R1161-R1168.
Wang, P., Zeng, S., Xu, P., Zhou, L., Zeng, L., Lu, X., ... & Li, G. (2014). Identification and expression analysis of two HSP70 isoforms in mandarin fish Siniperca chuatsi. Fisheries science, 80(4), 803-817.
Wang, Q. L., Yu, S. S., Qin, C. X., Dong, S. L., & Dong, Y. W. (2014). Combined effects of acute thermal and hypo-osmotic stresses on osmolality and hsp70, hsp90 and sod expression in the sea cucumber Apostichopus japonicus Selenka. Aquaculture international, 22(3), 1149-1161.
Wang, T. T., Wang, N., Liao, X. L., Meng, L., Liu, Y., & Chen, S. L. (2013). Cloning, molecular characterization and expression analysis of heat shock cognate 70 (Hsc70) cDNA from turbot (Scophthalmus maximus). Fish physiology and biochemistry, 39(6), 1377-1386.
Wei, T., Gao, Y., Wang, R., & Xu, T. (2013). A heat shock protein 90 β isoform involved in immune response to bacteria challenge and heat shock from Miichthys miiuy. Fish & shellfish immunology, 35(2), 429-437.
Wilson, J. M., & Laurent, P. (2002). Fish gill morphology: inside out. Journal of Experimental Zoology, 293(3), 192-213.
Wu, C. X., Zhao, F. Y., Zhang, Y., Zhu, Y. J., Ma, M. S., Mao, H. L., & Hu, C. Y. (2012). Overexpression of Hsp90 from grass carp (Ctenopharyngodon idella) increases thermal protection against heat stress. Fish & shellfish immunology, 33(1), 42-47.
Wu, X., Tan, J., Cai, M., & Liu, X. (2014). Molecular cloning, characterization, and expression analysis of a heat shock protein (HSP) 70 gene from Paphia undulata. Gene, 543(2), 275-285.
Yamashita, M., Hirayoshi, K., & Nagata, K. (2004). Characterization of multiple members of the HSP70 family in platyfish culture cells: molecular evolution of stress protein HSP70 in vertebrates. Gene, 336(2), 207-218.
Yamashita, M., Yabu, T., & Ojima, N. (2010). Stress protein HSP70 in fish.Aqua-BioScience Monographs, 3(4), 111-141.
Yang, W. K., Hseu, J. R., Tang, C. H., Chung, M. J., Wu, S. M., & Lee, T. H. (2009). Na+/K+-ATPase expression in gills of the euryhaline sailfin molly, Poecilia latipinna, is altered in response to salinity challenge. Journal of Experimental Marine Biology and Ecology, 375(1), 41-50.
Yeh, F. L., & Hsu, T. (2002). Differential regulation of spontaneous and heat‐induced HSP 70 expression in developing zebrafish (Danio rerio). Journal of Experimental Zoology, 293(4), 349-359.
Zafarullah, M., Wisniewski, J., Shworak, N. W., Schieman, S., Misra, S., & Gedamu, L. (1992). Molecular cloning and characterization of a constitutively expressed heat‐shock‐cognate hsc71 gene from rainbow trout. European Journal of Biochemistry, 204(2), 893-900.
Zhang, A., Zhou, X., Wang, X., & Zhou, H. (2011). Characterization of two heat shock proteins (Hsp70/Hsc70) from grass carp (Ctenopharyngodon idella): evidence for their differential gene expression, protein synthesis and secretion in LPS-challenged peripheral blood lymphocytes. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,159(2), 109-114.
Zhang, L., Sun, C., Ye, X., Zou, S., Lu, M., Liu, Z., & Tian, Y. (2014). Characterization of four heat-shock protein genes from Nile tilapia (Oreochromis niloticus) and demonstration of the inducible transcriptional activity of Hsp70 promoter. Fish physiology and biochemistry, 40(1), 221-233.
Zhang, Z., & Zhang, Q. (2012). Molecular cloning, characterization and expression of heat shock protein 70 gene from the oyster Crassostrea hongkongensis responding to thermal stress and exposure of Cu 2+ and malachite green. Gene, 497(2), 172-180.
Zippay, M. L., Place, S. P., & Hofmann, G. E. (2004). The molecular chaperone Hsc70 from a eurythermal marine goby exhibits temperature insensitivity during luciferase refolding assays. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 138(1), 1-7.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top