跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:白偉龍
研究生(外文):PAI,WEI-LUNG
論文名稱:燃氣高速火焰與燃料高速火焰噴塗鈷基塗層之機械性質研究
論文名稱(外文):The Study of Mechanical Properties of Co-base Coating Sprayed by Gas and Liquid-fuelled HVOF
指導教授:許兆民許兆民引用關係
指導教授(外文):Hsu,Chao-Ming
口試委員:林阿德張健桂洪宗彬許兆民
口試委員(外文):Lin, Ah-DerChang, Chien-KueiHung,Tsung-PinHsu, Chao-Ming
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:97
中文關鍵詞:燃氧高速火焰燃氣高速火焰燃料高速火焰熱噴塗鈷基塗層
外文關鍵詞:HVOFHVOGFHVOLFThermal SprayCobalt-based
相關次數:
  • 被引用被引用:0
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
高速火焰熱噴塗製程技術所形成之塗層,因其火焰速度快,具有高鍵結力、高密度與低孔隙率之優點,廣泛用於工業與航太零件上。本研究係使用兩種高速火焰之熱源(燃氣與燃料),將鈷基系材料之商用粉末噴塗至Inconel 718基材上,並在噴塗過程中使用即時監控系統觀察其兩種製程之火焰特性,如:熔融粉末之飛行速度、火炬溫度與能量等,並以SEM觀察金相組織結構之未熔顆粒及孔隙率,並使用相關儀器檢測塗層表面硬度、微硬度與塗層鍵結力,藉此探討此兩種熱源所製成的塗層之金相組織結構與機械性質的差異性。
實驗結果顯示在使用燃料高速火焰(High Velocity Oxy Liquid Fuel, HVOLF)噴塗所產生的粉末顆粒飛行速度為燃氣高速火焰(High Velocity Oxy Gaseous Fuel, HVOLF)的1.23倍,但在兩種的熱源所產生的火炬溫度與表面硬度結果並無明顯差異性。也因為HVOLF 熔融粉末的飛行速度大,具有較大的衝擊動能,使得金相組織結構較緻密,所以微硬度與鍵結力平均值都比HVOGF高,分別為1.20與1.65倍。在此次實驗參數條件下,利用燃料高速火焰(HVOLF)製程噴塗鈷基材料之商用粉末,在塗層金相組織內未融顆粒、孔隙率、微硬度與鍵結力等機械性質比使用燃氣高速火焰(HVOGF)更優異。

Due to its advantages such as fast flame velocity, bonding strength, high density and low porosity, thermal coatings applied by High Velocity Oxygen Fuel thermal spray technique is widely used in the industry and aero components.
The study uses commercial spray powder that is cobalt-based on substrate material Inconel 718 and observes the flame characteristics of the two processes (HVOGF and HVOLF) with monitoring system during thermal spray process. The characteristics to be observed include the velocity of molten particles, plume temperature and total intensity. The metallographic structure of the unmelted particles and porosity are also examined with SEM. Furthermore, the surface hardness, micro-hardness and bonding strength are to be examined with applicable equipment as well. After the experiment and observation, the study reviews the metallographic and mechanic differences between the two coatings that are produced by these two heat sources.
The result of the experiment shows that velocity of particles produced by HVOLF is 1.23 times faster than those produced by HVOGF. However, there is no apparent difference between the plume temperature and surface hardness produced by these two heat sources. Moreover, because of greater flying speed of the melted powder produced by HVOLF, it has greater impact to make more compact metallographic structure and the average values of its micro-hardness and bonding strength which are 1.20 and 1.65 times respectively is higher than those of HVOGF.
In this conditions of the experimental parameters, cobalt-based commercial spray powder that uses HVOLF thermal spray process performs better than HVOGF in terms of its mechanical properties such as unmelt particles in the metallographic structure, porosity, micro-hardness and bonding strength.
中文摘要 I
英文摘要 II
致謝 IV
目次 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻回顧 4
1.3.1 熱噴塗原理 4
1.3.2 塗層性質與結構組織 6
1.3.3 塗層種類與功能 7
1.3.4 熱噴塗製程分類 14
第二章 實驗方法與步驟 29
2.1實驗規劃 29
2.2實驗流程 32
2.3實驗材料與設備 33
2.3.1 試片規格 33
2.3.2 試片前處理 34
2.3.3 噴塗使用粉末 35
2.3.4 實驗參數規劃 37
2.3.5 金相試片製備 38
2.3.6 實驗設備 41
2.4 實驗程序 46
2.4.1 噴塗焰流監測 46
2.4.2 金相組織結構分析 47
2.4.3 表面硬度檢測 48
2.4.4 微硬度檢測 49
2.4.5 鍵結力檢測 50
第三章 結果與討論 52
3.1 噴塗焰流分析結果 52
3.1.1 顆粒速度 53
3.1.2 火炬溫度54
3.1.3 總強度量55
3.2 金相組織分析結果 58
3.2.1 未熔顆粒 59
3.2.2 孔隙率 59
3.3 表面硬度結果 67
3.4 微硬度結果 70
3.5 鍵結力結果 73
第四章 結論 77
參考文獻 80

[1]L.Pawlowski, The Science and Engineering of Thermal Spray Coatings. New York: John Wiley & Sons, 1995.
[2]Occupational Safety and Health Administration, “Hexavalent Chromium,” pp. 1–16, 2009.
[3]M.Li and P. D.Christofides, “Multi-scale modeling and analysis of an industrial HVOF thermal spray process,” Chem. Eng. Sci., vol. 60, no. 13, pp. 3649–3669, 2005.
[4]B.Sartwell, J.Zimmerman, J.Gribble, and K.Legg, “Validation of HVOF Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Hydraulic/Pneumatic Actuators,” Nav. Res. Lab. Final Rep., 2007.
[5]J.Mostaghimi, S.Chandra, A.Dolatabadi, R.Ghafouri-Azar, and A.Dolatabadi, “Modeling thermal spray coating processes: A powerful tool in design and optimization,” Surf. Coatings Technol., vol. 163–164, pp. 1–11, 2003.
[6]Oerlikon Metco, “Protective coatings and innovations,” IPCM, Wohlen, Switzerland, pp. 48–53, Oct-2015.
[7]H.Herman and S.Sampath, Metallurgical and Ceramic Protective Coatings, 1st ed. London: Springer Netherlands, 1996.
[8]J.R.David, Ed., Handbook of Thermal Spray Technology. Materials Park: ASM International, 2004.
[9]Oerlikon Metco, “An Introduction to Thermal Spray,” no. 5, pp. 1–24, 2012.
[10]P.Vuoristo, Thermal Spray Coating Processes, vol. 4. Elsevier, 2014.
[11]H.Herman, “Plasma-sprayed coatings,” Sci. Am., vol. 259:3, pp. 78–83, 1996.
[12]Mitchell R.Dorfman, Handbook of Environmental Degradation of Materials:Thermal Spray Coatings, vol. 19. New York: Elsevier Inc., 2012.
[13]P. Fauchais and A.Vardelle, “Thermal Sprayed Coatings Used Against Corrosion and Corrosive Wear,” in advancedplasma spray applications, Ed.2012, pp. 3–38.
[14]B.A.Kushner and E.R.Novinski, ASM Handbook, 2nd ed., vol. 18. Materials Park,Ohio: ASM International, 1990.
[15]D.E.Crawmer, Handbook of thermal spray technology. Materials Park,Ohio: ASM International, 2005.
[16]H.Herman and R.A.Sulit, ASM Handbook. Materials Park,Ohio: ASM International, 1990.
[17]Mitchell R.Dorfman, Handbook of environmental degradation of materials. 2005.
[18]D.Sporer, S.Wilson, and M.Dorfman, “Ceramics for abradable shroud seal applications,” in Advanced Ceramic Coatings and Interfaces IV, D. Zhu,H.T., New Jersey: John Wiley & Sons, 2009, pp. 39–54.
[19]E.Lugscheider, J.Zwick, M.Hertter, and D.Sporer, “Control of coating properties of abradable seals by on-line process diagnostics,” Int. Therm. Spray Conf., 2005.
[20]MR.Dorfman, BA.Kushner, J.Nerz, and AJ.Rotolico, “A technical assessment of high velocity oxygen-fuel versus high energy plasma carbon carbide-cobalt coating for wear resistance,” in Proceedings of the Twelfth International Conference on Thermal Spraying, Abington Hall, 1989, pp. 291–302.
[21]T.P.Slavin and J.Nerz, “Material characteristics and performance of WC–Co wear resistant coatings,” in Proceedings of the Third National Thermal Spray Conference, 1990, pp. 159–164.
[22]A. M.Korsunsky, A. R.Torosyan, and K.Kim, “Development and characterization of low friction coatings for protection against fretting wear in aerospace components,” Thin Solid Films, vol. 516, no. 16, pp. 5690–5699, 2008.
[23]B.Rajasekaran, S.Ganesh Sundara Raman, S.V.Joshi, and G.Sundararajan, “Effect of detonation gun sprayed Cu-Ni-In coating on Al-Mg-Si alloy on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy,” Int. J. Fatigue, vol. 31, no. 4, pp. 791–796, 2009.
[24]V.Kumar and B.Kandasubramanian, “Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications,” Particuology, vol. 27, pp. 1–28, 2016.
[25]N.P.Padture, M.Gell, and E.H.Jordan, “thermal barrier coatings for gas-turbine engine applications,” Mater. Sci., vol. 296, no. 5566, pp. 280–284, 2002.
[26]A.Vardelle et al., “The 2016 Thermal Spray Roadmap,” J. Therm. Spray Technol., vol. 25, no. 8, pp. 1376–1440, 2016.
[27]S.Li, X.Yang, H.Qi, G.Xu, and D.Shi, “Influence of MCrAlY coating on low-cycle fatigue behavior of a directionally solidified nickel-based superalloy in hot corrosive environment,” Mater. Sci. Eng. A, vol. 678, pp. 57–64, 2016.
[28]R.Rajendran, “Gas turbine coatings - An overview,” Eng. Fail. Anal., vol. 26, pp. 355–369, 2012.
[29]N.Espallargas, Introduction to thermal spray coatings. Elsevier Ltd., 2015.
[30]蕭威典、劉武漢, “電漿熔射技術簡介,” 工業材料雜誌, pp. 158–165, 2015.
[31]J.Karthikeyan, C.C.Berndt, J.Tikkanen, J.Y.Wang, A.H.King, and H.Herman, “Nanostructured Materials,” vol. 8, pp. 61–74, 1997.
[32]S.Sampath, R.A.Neiser, and H.Herman, “Journal of Materials Research,” vol. 8, pp. 78–86, 1993.
[33]M.K. Hedges, A.P.Newbery, and P.S.Grant, Materials Science and Engineering, 3rd ed., vol. A326. EOLSS Publications, 2009.
[34]H.Kim, S.Hwang, C.Lee, and P.Juvanon, “Assesment of wear performance of flame sprayed and fused Ni-based coatings,” Surf. Coat. Technol., vol. 172, pp. 262–269, 2003.
[35]E. R.Sampson, “Thermal spray coatings for corrosion protection : An overview,” pp. 27–30, 1997.
[36]B. Fitzsimons, “Thermal Spray Metal Coatings for Corrosion Protection,” Corros. Manag., pp. 12–17, 1995.
[37]L. E. Weiss, F. B. Prinz, and E. L.Gursoz, “Rapid Tool Manufacturing,” 189,781, 1993.
[38]L. E.Weiss, D. G.Thuel, L.Schultz, and F. B.Prinz, “Arc Sprayed Steel-Faced Tooling,” J. Therm. Spray Technol., vol. 3, no. 3, pp. 275–281, 1994.
[39]L.E.Weiss and F.B.Prinz, “A Thermal Spray Approach to Rapid Prototyping- An Extended Abstract,” vol. 3, no. 3, pp. 297–298, 1994.
[40]蕭威典, "熔射覆膜技術", 全華科技圖書股份有限公司, 2006.
[41]J.M.Migue, J.M.Guileman, and S.Vizcain, “Tribological study of NiCrBSi coating obtained by different processe,” Tribol, vol. 36, pp. 181–187, 2003.
[42]呂明生、蕭威典、劉茂賢, “熱熔射塗層技術在工業界之應用”, 工業材料雜誌, pp. 151–158, 2008.
[43]H.J.Kim, S.Y.Hwang, C.H.Lee, and P.Juvanon, “Assessment of wear performance of flame sprayed and fused Ni-based coatings,” Surf. Coat. Technol, vol. 172, pp. 262–269, 2003.
[44]劉茂賢, “熔射製程與即時監控技術之原理與應用簡介,” 工業材料雜誌雜誌, pp. 123–131, 2005.
[45]S.Grainger and J.Blunt, Engineering coatings, design and applications. Cambridge UK: Abington Publishing, 1995.
[46]H.Herman, S.Sampath, and R.McCune, “Thermal spray: current status and future trends,” Mater. Res. Soc. Bull, vol. 25, no. 7, pp. 17–25, 2000.
[47]J.A.Hearleya, J.A.Littlea, and A.J.Sturgeon, “The effect of spray parameters on the properties of high velocity oxy-fuel NiAl intermetallic coatings,” Surf. Coatings Technol., vol. 123, no. 2–3, pp. 210–218, 2000.
[48]A.Dolatabadi, J.Mostaghimi, and V.Pershin, “High efficiency nozzle for thermal spray of high quality, low oxide content coatings,” US20030178511 A1, 2003.
[49]J.Nerz, B.Kushner, and A.Rotolico, “Microstructural evaluation of tungsten carbide-cobalt coatings,” Thermal. Spray Technol., vol. 1, no. 2, pp. 147–152, 1992.
[50]V.V. Sobolev, J.M.Guilemany, and J.Nutting, “High velocity oxy-fuel spraying, Maney for the Institute of Materials, Minerals and Mining,” Leeds, p. 65, 2004.
[51]J. M. U.Guilemany, J. M.Miguel, S.Vizcaino, and F.Climent, “Role of three-body abrasion wear in the sliding wear behaviour of WC-Co coatings obtained by thermal spraying,” Surf. Coatings Technol., vol. 140, pp. 141–146, 2001.
[52]Suler Metco, “Solutions Flash Real-Time Sensor Technology Improves Process Control While Reducing Time and Cost,” Technology, no. April, pp. 1–8, 2008.
[53]ASTM E18, “Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials.”
[54]ASTM E384, “Standard Test Method for Microhardness of Materials.”
[55]ASTM C633, “Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings.”



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top