跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 02:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳筱芸
研究生(外文):Chen, Hsiao-Yun
論文名稱:覆晶封裝銲錫接點在介面反應,電遷移與熱遷移下之顯微結構變化
論文名稱(外文):Microstructure Changes Associated with Interfacial Reactions, Electromigration and Thermomigration in Flip Chip Solder Joints
指導教授:陳智陳智引用關係
指導教授(外文):Chen, Chih
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:181
中文關鍵詞:覆晶銲錫介面反應電遷移熱遷移
外文關鍵詞:flip chip solder jointsinterfacial reactionelectromigrationthermomigration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:822
  • 評分評分:
  • 下載下載:163
  • 收藏至我的研究室書目清單書目收藏:0
覆晶 (Flip Chip)接合封裝技術中,一個銲錫凸塊往往包含不同的金屬化墊層(Under Bump Metallization, UBM)結構。而銲錫接點與金屬墊層的反應則直接會影響到接到的機械性質以及電性。同時隨著無鉛銲錫的採用,與銲錫反應較為和緩的Ni金屬墊層也逐漸成為關注的焦點。
本論文第二章,探討了電鍍Ni與無電鍍Ni與銲錫接點的迴銲以及時效之反應.由於電鍍Ni為結晶結構,而無電鍍Ni雖為非晶質結構,卻會在反應之過程中形成一層柱狀之Ni3P,而相對的加快了反應之速度。而由其兩種金屬墊層與錫鉛以及無鉛銲錫之反應,可以明確得到電鍍Ni確實大大的減緩了介面反應的速率,相對降低界金屬化合物Spalling的可能性。
同時,隨著可攜式電子產品微小化的趨勢,覆晶封裝銲錫接點也須隨之縮小,因此銲錫接點所承載的電流密度逐漸提高,在高電流密度的影響下,覆晶封裝銲錫接點因電遷移產生可靠度的議題受到重視。此外,導線所產生的焦耳熱效應嚴重影響銲錫接點內部的溫度分布,因為溫度差產生的溫度梯度產生熱遷移的破壞,熱遷移的破壞也越來越受到注目。
後續的三四章,討論電遷移對於銲錫接點的影響。除了利用Kelvin Four-point Probe監控銲錫接點之電阻在電遷移測試中的變化外,同時也觀測相對應的微觀結構變化。而為了可以更加準確的預測出銲錫接點之壽命,利用鋁導線TCR之特性,我們可以成功校正得到銲錫接點在測試中的真實溫度,有助於正確的估算出電遷移之活化能。不同金屬墊層材料及設計對於接點壽命的影響,相較於Cu UBM,Ni UBM 則據有較高的抗電遷移以及熱遷移之特性因而有較長的接點壽命。
第五與第六章,針對越來越受到矚目的熱遷移現象做較深入的討論。與以往觀察到的不同,上方的Cu金屬墊層,除了會因為具有往冷端移動的特性外,更因為在Sn-based為主的銲錫接點中可沿著c軸進行非常快速的間隙型擴散,導致在沒有電流通過的和錫接點下中也會有相當嚴重程度的破壞。反之,Ni金屬並無出現同樣的破壞機制。
同時,另一意外的發現為:在沒有通過電流的銲錫接點上方之鋁導線也有嚴重的破壞產生。穿透式電子顯微鏡之分析,顯示為擴散阻障層之Ti也消失不見,故我們推論不僅僅是Al本身之熱遷移,連同Ti之熱遷移,才會造成導線之破壞。

It has been reported that the choice of proper under bump metallization (UBM) plays an important role in determining the reliability of solder joints. Ni, compared with Cu, possesses slower reaction rate with Sn-based solder joint and lower solubility therefore has been studied recently. Here in chapter 2, we analyze the interfacial reaction between solder and electroplated Ni and eletroless Ni for the reflow and aging reaction at the same time with SnAg and SnPb solder joints. Electroless Ni has much faster reaction rate instead of Electroplated Ni due to the transformation of amorphous phase to a Ni3P crystalline phase.
The carry-on current density in the solder joint needs to be increased to 104 A/cm2 or higher due to the shrinking of portable devices. Under such high current density, the electromigration and the companied thermomigrtion in the solder joints becomes a serious reliability issue. To predict a more accurate mean time to failure, the Black’s equation needs to modify by calibrating the true test temperature and therefore the eletromigration activation energy, which both these two can have great influence on prediction. By utilizing Kelvin four-point probes, a criteria of 20% resistance increase is established and the microstructure change has been analyzed as well. With the temperature calibration by using Al TCR effect, up to 10% discrepancy in activation energy can be reached.
For thermomigration, unexpected void formation was observed in powered and unpowered bumps. Besides Sn thermomigration itself, we proposed a model of thermomigration of Cu-Sn IMC to explain. The fast interstitial diffusion of Cu inside Sn matrix combined with the tendency of thermal migrate to cold end of Cu, damage appeared at those bumps even with current stressing. For further investigation, void formation inside Al trace and the disappearance of Ti layer was found surprisingly. According to literatures, Al has the tendency to cold end, and so is Ti, which possesses a much larger heat of transport. More details will be discussed later in chapter 5 and 6.

Table of contents

Abstract (in Chinese) i
Abstract (in English) iv
Aknowlodgement vii

Table of contents Ix
List of Tables xiv
Figure Captions xv


Chapter 1 Overview of Interfacial Reaction, Electromigration and Thermomigration
1.1 Flip-chip Technology…………………………......................................... 1
1.2 Introduction of Interfacial Reaction………………………….......... 3
1.3 Introduction of Electromigration…………………………............... 4
1.3.1 Failure sites and flux divergence…………………………........................ 5
1.3.2 Current crowding effect…………………………...................................... 7
1.3.3 Joule heating effect…………………………............................................... 9
1.3.4 Mean-time to failure…………………………............................................. 10
1.4 Introduction of Thermomigration…………………………............... 11
1.4.1 Measurement of the heat of transport…………………………................ 11
1.4.2 Thermomigration accompanying electromigration in flip chip solder joint………………………….................................................................................. 13
1.4.3 Thermomigration in composite SnPb flip chip solder joints…………… 14
1.4.4 Thermomigration in Pb-free flip chip solder joints……………………... 14
1.5 Summary…………….................................................................................. 15
2.6 References……………................................................................................. 17


Chapter 2 Kinetic study of the Intermetallic Compound Formation of Eutectic SnAg an Eutectic SnPb solder with Electroplated Ni Metallization in Flip-chip Solder Joints
2.1 Introduction……………............................................................................. 33
2.2 Experimental Procedures…………….................................................... 35
2.3 Results and Discussions
2.3.1 Growth of IMC and Ni consumption rate…………….............................. 36
2.3.2 NiSnP phase and Kirkendall void formation……………......................... 38
2.3.3 IMC Growth kinetics……………................................................................ 41
2.3.4 Ni consumption rate…………….................................................................. 47
2.4 Summary…………….................................................................................. 48
2.5 References……………................................................................................. 50


Chapter 3 Measurement of electromigration activation energy in eutectic SnPb and SnAg flip-chip solder joints with Cu and Ni under-bump metallization
3.1 Introduction……………............................................................................. 70
3.2 Experimental Procedures…………….................................................... 72
3.3 Results and Discussion
3.3.1 Electromigration test……………................................................................ 73
3.3.2 TCR effect measurement and Joule Heating effect……………............... 75
3.3.3 Activation energy fitting……………........................................................... 77
3.4 Summary…………….................................................................................. 79
3.5 References……………................................................................................. 80


Chapter 4 Effect of under-bump-metallization structure on electromigration life time of Sn-Ag solder joints
4.1 Introduction……………............................................................................. 91
4.2 Experimental Procedures…………….................................................... 92
4.3 Results and Discussions
4.3.1 Different Bump resistance increase and the corresponding Microstructure imgaes……………....................................................................... 94
4.3.2 Joule heating effect……………................................................................... 97
4.3.3 Simulation results……………...................................................................... 98
4.3.4 Electromigration activation energy measurement……………................. 99
4.4 Summary…………….................................................................................. 100
4.5 References……………................................................................................. 101


Chapter 5 Failure induced by thermomigration of Cu-Sn
and Ni-Sn intermetallic compounds during
electromigration in Pb-free SnAg solder joints
5.1 Introduction……………............................................................................. 116
5.2 Experimental Procedures….................................................................... 117
5.3 Results and Discussions
5.3.1 Microstructure change due to theremomigration...................................... 118
5.3.2 Temperature distribution measurement..................................................... 123
5.3.3 Theoretical calculation................................................................................. 124
5.3.4 Thermomigration Model.............................................................................. 126
5.4 Summary....................................................................................................... 127
5.5 References..................................................................................................... 128


Chapter 6 Void formation in Al interconnects induced by Ti thermomigration and Al-Cu reaction in flip-chip solder joints
6.1 Introduction................................................................................................. 141
6.2 Experimental Procedures........................................................................ 142
6.3 Results and Discussions
6.3.1 Void formation inside Al trace..................................................................... 143
6.3.2 Theoretical calculation................................................................................. 145
6.3.3 Simulation results......................................................................................... 146
6.4 Summary....................................................................................................... 147
6.5 References..................................................................................................... 148


Chapter 7 Conclusion and Future Work
7.1 Conclusion.................................................................................................... 158
7.2 Future Work.................................................................................................... 160


Appendix Effect of Polyethylene Glycol Additives on
Pulse Electroplating of SnAg Solder
A.1 Introdiction 162
A.2 Experimental Procedures 164
A.3 Results and Discussions
A.3.1 Composition characterization 165
A.3.2 Electrochemical Analysis 168
A.3.3 Deposit microstructure and phase identification 169
A.4 Summary 170
A.5 References 171

1.6 References
1. J. H. Lau, “Flip Chip Technology” (McGraw-Hill, New York, 1995), p.123.
2. E. M. Davis, W. E. Harding, R. S. Schwartz, and J. J. Corning, Solid logic technology: versatile, high performance microelectronics, IBM J. Res. Develop. 44, 56 (2000).
3. L. R. Miller, Controlled collapse reflow chip joining, IBM J. Res. Develop., 239 (1969).
4. P. A. Totta and R. P. Sopher, SLT device metallurgy and its monolithic extensions, IBM J. Res. Develop 13 (1969).
5. K. Puttlitz and P. A. Totta, "Area Array Interconnection Handbook" (Kluwer Academic, Boston, MA, 2001).
6. K. Zeng and K.N. Tu, Mater. Sci. Eng. R. 38, 55 (2002).
7. A. Sharif and Y.C. Chan, Mater. Sci. Eng. B. 106, 126 (2004) .
8. J.W. Yoon, S.W. Kim and S.B. Jung, Mater. Trans. 45, 727 (2004).
9. K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001).
10. S. K. Kang and V. Ramachandran, Scripta Mat. 14, 421 (1980).
11. M. O. Alam, Y. C. Chan and K. C. Hung, J. Electron. Mater. 31, 1117 (2002).
12. K.H. Prakash and T. Sritharan, J. Electron. Mater. 32, 939 (2003).
13. K. N. Tu and K. Zeng, Mater. Sci. and Eng. R 34, 1 (2001).
14. J. W. Yoon, C. B. Lee and S. B. Jung, J. Electron. Mater. 32, 1195 (2003).
15. W. G. Bader, Weld. J. Res. Suppl. 28, 551 (1969)
16. K. N. Tu, J. Appl. Phys. 94(9), 5451 (2003)
17. P. G. Shewmon, “Diffusion in Solids” (TMS, Warrendale, PA 1989), Chapter 7.
18. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, J. Electron. Mater. 29, 1122 (2000)
19. M. E. Looms and M. E. Fine, Metall. Mater. Trans. A 31A, 1155 (2000)
20. Christou, “Electromigration and electronic device degredation” Wiley, New York (1994)
21. Q. T. Huynh, C. Y. Liu, C. Chen and K. N. Tu, J. Appl. Phys. 89, 4332 (2000)
22. J. W. Jang, C. Y. Liu, P. G. Kim, K. N. Tu, A. K. Mal and D. R. Frear, J. Mater. Res. 15 1679 (2000)
23. Y. Guo, W. T. Chen and C. K. Lim, Proceedings of the ASME Conference in Electronic Packaging, San Jose, CA, 1992, p. 199
24. Everett C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, H. Balkan, Appl. Phys. Lett. 80(4), 580 (2002)
25. L. Y. Zhang, S. Q. Ou, J. Huang, K. N. Tu, S. Gee, and L. Nguyen, Appl. Phys. Lett. 88, 012106 (2006)
26. R. A. Oriani, J. Phys. Chem. Solids 30, 339 (1969)
27. H. Ye, C. Basaran, and D. Hopkins, Appl. Phys. Lett. 82(7), 1045 (2003).
28. T. L. Shao, S. H. Chiu, Chih Chen, D. J. Yao, and C. Y. Hsu, J. Electron. Mater. 33, 1350 (2004).
29. S. H. Chiu, T. L. Shao, Chih Chen, D. J. Yao, and C. Y. Hsu, Appl. Phys. Lett. 88, 022110 (2006).
30. S. H. Chiu , Thesis, National Chiao Tung University, 2007
31. 何煇耀, 可靠度保證-工程與管理技術之應用: 中華民國品質學會發行
32. J. R. Black, IEEE Trans. Electron Devices ED 16, 338 (1969).
33. W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys. 94, 5665 (2003).
34. Hans Wever, Elektro u. Thermo-transport in Metallen, J. A. Barth, Leipzig (1973)
35. H. Ye, C. Basaran and D. C. Hopkins, Appl. Phys. Lett. 82, 1045 (2003)
36. C. Basaran, H. Ye, D. C. Hopkins, D. R. Frear and J. K. Lin, J. Electronic Packaging, 27, 157 (2005)
37. Annie Huang, A. M. Gusak, K. N. Tu, and Yi-Shao Lai, Appl. Phys. Lett., 88, 141911 (2006).
38. H. Y. Hsiao and C. Chen, Appl. Phys. Lett., 94, 092107 (2009)
39. H. Y. Chen, C. Chen, K. N. Tu, Appl. Phys. Lett. 93,122103 (2008)
2.5 References
1. R.R. Tummala, E.J. Rymaszewski, and A.G. Klopfenstein: Microelectronics Packaging Handbook, 2nd ed. (Chapman & Hall, 1997) Part 2, Ch 8.
2. S. K. Kang and V. Ramachandran, Scripta Mat. 14, 421 (1980).
3. M. O. Alam, Y. C. Chan and K. C. Hung, J. Electron. Mater. 31, 1117 (2002).
4. K.H. Prakash and T. Sritharan, J. Electron. Mater. 32, 939 (2003).
5. K. N. Tu and K. Zeng, Mater. Sci. and Eng. R 34, 1 (2001).
6. H. K. Kim, K. N. Tu and P. A. Totta, Appl. Phys. Lett. 68, 2204 (1996).
7. K. Zeng and K. N. Tu, Mater. Sci. Eng. R 38 ,55 (2002).
8. R.J.K. Wassink, Soldering in Electronics. Electrchemical Publications, IOM (1984).
9. P. G. Kim, J. W. Jang, T. Y. Lee and K. N. Tu, J. Appl. Phys. 86, 6746 (1999) .
10. K. L. Lin and Y. C. Liu, IEEE Trans. Adv. Pack. 22(4), 568 (1999).
11. Z. Mei and R. H. Dauskardt, Reliability of electroless processed thin layered solder Joints. in 1999 MRS Spring Meeting Symposium M; Materails Reliability in Mocroelectronics IX;. pp. 1.
12. C. Y. Lee and K. L. Lin, Thin solid films 249(2), 201 (1994).
13. J. W. Jang, P. G. Kim and K. N. Tu, J. Appl. Phys. 85(12), 8456 (1999).
14. K. C. Hung, Y. C. Chen, C. W. Tang and H. C. Ong, J. Mater. Res. 15(11), 2534 (2000).
15. K. C. Hung and Y. C. Chen, J. Mater. Sci. Lett. 19,1755 (2000).
16. J. W. Jang, D. R. Peter, T. Y. Lee and K. N. Tu, J. Appl. Phys. 88, 6359 (2000).
17. Y. D. Jeon, K. W. Paik, K. S. Bok, W. S. Choi and C. L. Cho, J. Mater. Res. 31, 520 (2002).
18. M. He, A. Kumar, P. T. Yeo, G. J. Qi and Z. Chen, Thin Solid Films 462-463, 387 (2004).
19. S. J. Wang, H. J. Kao and C. Y. Liu, J. Electron. Mater. 30(2), 130 (2004).
20. S. J. Wang and C. Y. Liu, Scripta Mat 49, 813 (2003).
21. M. He, W. H. Lau, G. Qi and Z. Chen, Thin Solid Films 462-463, 376 (2004).
22. G. Ghosh, J. Appl. Phys. 88(11), 6887 (2000).
23. P.L. Tu, Y.C. Chan, K.C. Hung and J.K.L. Lai, Scripta Mat 44, 317 (2001).
24. G. Ghosh, Acta Mater 49, 2609 (2001)
25. J.F. Li, S.H. Mannan, M.P. Clode, K. Chen, D.C. Whalley, C. Liu and D.A. Hutt, Acta Mater 55, 737 (2007)
26. G. Ghosh, Acta Mater. 48, 3719 (2000).
27. C. P. Huang and C. Chen, J. Mater. Res. 20(10), 2772 (2005).
28. C. S. Huang, J. G. Duh and Y. M. Chen, J. Electron. Mater. 32(12), 1509 (2003).
29. Y. Takaku, X. J. Liu, I . Ohnuma, R . Kainuma, K. Ishida, Mater Trans. 45, 646 (2004).
30 R. H. Dauskardt, F. Haubensak and R. O. Ritchie, Acta Metall Mater. 38(2), 143 (1990).
31. C. M. Chen and S. W. Chen, J. Appl. Phys. 90(3), 1208 (2001).
32. C. E. Ho, S. E. Yang and C. R. Kao, J Master Sci : Mater Electron 18, 155 (2007).
33. A. A. Liu, K. N. Kim and P. A. Totta, J. Appl. Phys. 80, 2774 (1996)
34. H. K. Kim and K. N. Tu, Phys Rev B 53, 16027 (1996).
35. S. S. Kang and V. Ramachandran, Scr Metall 14, 421 (1980).
36. S. K. Kang, R. S. Rai and S. Purushothaman, J. Electron. Mater. 25, 1113 (1996).
37. D. Gur and M. Bamberger, Acta Mater 46, 4917 (1998).
38. M. Schaefer, R. A. Fournelle and J. Liang, J. Electron. Mater. 27, 1167 (1998).
3.5 References
1. International Technology Roadmap for Semiconductors: Semiconductor Industry Association, San Jose, CA, 2003.
2. K. N. Tu, J. Appl. Phys. 94, 5451 (2003).
3. L. Zhang, S. Q. Ou, J. Huang, K. N. Tu, S. Gee, and L. Nguyen , Appl. Phys. Lett. 88, 012106 (2006).
4. F. Y. Ouyang, K. Chen, K. N. Tu, and Y. S. Lai , Appl. Phys. Lett. 91, 231919 (2007).
5. T. L. Shao, Y. H. Chen, S. H. Chiu, and C. Chen , J. Appl. Phys. 96, 4518 (2004).
6. S. H. Chiu and C. Chen, Appl. Phys. Lett. 89, 262106 (2006).
7. Y. H. Lin, C. M. Tsai, Y. C. Hu, Y. L. Lin, and C. R. Kao , J. Electron. Mater. 34, 27 (2005).
8. S. H. Chiu, T. L. Shao, and C. Chen, Appl. Phys. Lett. 88, 022110 (2006).
9. W. J. Choi, E. C. C. Yeh and K. N. Tu , J.Appl. Phys. 94 (9), 5665 (2003).
10. S. H. Chae, X. F. Zhang, K. H. Lu, H. L. Chao, P. S. Ho, M. Ding, P. Su, T. Uehling and L. N. Ramanathan, Proceedings of the 56th Electronic Components and Technology Conference, p. 650 (2006).
11. Y. S. Lai, K. M. Chen, C. L. Kao, C. W. Lee, and Y. T. Chiu , Microelectronics Reliability 47, 1273 (2007)
12. J. H. Lee, G. T. Lim, Y. B. Park, S. T. Yang, M. S. Suh, Q. H. Chung and K. Y. Byun, J. Korean Phys. Soc. 54 (5) 1784, (2008).
13. S. Gee, N. Kelkar, J. Huang and K. N. Tu, Proc. of IPACK 2005, San Francisco, CA, 2005.
14. Y. W. Chang, S. W. Liang and C. Chen, Appl. Phys. Lett. 89, 032103 (2006).
15. K. Zeng and K. N. Tu , R38, 55 (2002).
16. C. K. Chou, C. A. Chen, S. W. Liang, and C. Chen, J.Appl. Phys. 99, 054502 (2006).
17. T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frea, K. Zeng and J. K. Kivilahti , J. Mater. Res. 17 (2) 291 (2002).
18. M. O. Alam and Y. C. Chan, J.Appl. Phys. 98, 123527 (2005).
4.5 References
1 K. N. Tu, Solder Joint Technology _Springer, New York, 2007, pp. 245–287.
2 I. A. Blech, Appl. Phys. Lett. 29, 131 (1976).
3 H. B. Huntington and A. R. Grone, J. Phys. Chem. Solids 20, 76 (1961).
4 K. Zeng and K. N. Tu, Mater. Sci. Eng., R. 38, 55 (2002).
5 L. H. Xu, J. H. L. Pang, and K. N. Tu, Appl. Phys. Lett. 89, 221909 (2006).
6 L. Zhang, S. Q. Ou, J. Huang, K. N. Tu, S. Gee, and L. Nguyen, Appl. Phys. Lett. 88, 012106 (2006).
7 K. N. Tu, J. Appl. Phys. 94, 5451 (2003).
8 W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys. 94, 5665 (2003).
9 J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu, J. Appl. Phys. 94, 7560 (2003).
10 T. L. Shao, Y. H. Chen, S. H. Chiu, and C. Chen, J. Appl. Phys. 96, 4518 (2004).
11 Y. H. Lin, Y. C. Hu, C. M. Tsai, C. R. Kao, and K. N. Tu, Acta Mater. 53, 2029 (2005).
12 Y. L. Lin, C. W. Chang, C. M. Tsai, C. W. Lee, and C. R. Kao, J. Electron. Mater. 35, 1010 (2006).
13 L. H. Xu, J. K. Han, J. J. Liang and K. N. Tu, Appl. Phys. Lett. 92, 262104 (2008).
14 J. W. Nah, J. O. Suh, K. N. Tu, S. W. Yoon, V. S. Rao, V. Kripesh, and F. Hua, J. Appl. Phys. 100, 123513 (2006).
15 S. W. Liang, Y. W. Chang and C. Chen, J. Electron. Mater. 36 (10), 1348 (2006).
16 Y. H. Lin, Y. S. Lai, Y. W. Lin and C. R. Kao, J. Electron. Mater. 37(1), 96 (2008)
17 Y. W. Chang, S. W. Liang and C. Chen, Appl. Phys. Lett. 89, 032103 (2006).
18. E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).
19. L. Zhang, S. Ou, J. Huang, K. N. Tu, S. Gee and L. Nguyen, Appl. Phys. Lett. 88, 012106 (2006).
20. B. F. Dvson, T. R. Anthony and D. Turnbull, J. Appl. Phys. 38, 3408 (1967).
21. K. Zeng and K. N. Tu, Materials Science and Engineering Reports, R38, 55 (2002).
22. S. H. Chiu, T. L. Shao and C. Chen, Appl. Phys. Lett. 88, 022110 (2006).
23. S. W. Liang, Y. W. Chang, T. L. Shao, Chih Chen and K. N. Tu, Appl. Phys. Lett. 89, 022117 (2006).
24. S. W. Liang, S. H. Chiu, T. L. Shao and C. Chen, J. Electron. Mater. 21(1), 137 (2008)
5.5 References
1. C. Chen, H.M. Tong and K.N. Tu, Annual Reviews Materials Research, 40, 531 (2010).
2. L.D. Chen, M.L. Huang and S.M. Zhou, J. Alloys Compd. 504, 535 (2010).
3. J.S. Zhang, Y.C. Chan, Y.P. Wu, H.J. Xi and F.S. Wu:, J. Alloys Compd. 458, 492 (2008).
4. H. J. Lin, J. S. Lin and T. H. Chuang, J. Alloys Compd. 487, 458 (2009).
5. B. Chao, S. H. Chae, X. F. Zhang, K. H. Lu, J. Im and P. S. Ho, Acta Mater. 55(8), 2805 (2007).
6. H. Ye, C. Basaran and D. C. Hopkins, Appl. Phys. Lett. 82, 1045 (2003).
7. A. T. Huang, A. M. Gusak, K. N. Tu and Y. S. Lai, Appl. Phys. Lett. 88, 141911 (2006).
8. S. H. Chiu, T. L. Shao, C. Chen, D. J. Yao and C. Y. Hsu, Appl. Phys. Lett. 88(2), 022110 (2006).
9. J. W. Nah, J. H. Kim, H. M. Lee and K. W. Paik, Acta Mater. 52(1), 129 (2004).
10. Y. H. Lin, Y. C. Hu, C. M. Tsai, C. R. Kao and K. N. Tu, Acta Mater. 53(7), 2029 (2005).
11. T. L. Shao, S. W. Liang, T. C. Lin and C. Chen, J. Appl. Phys. 980, 44509 (2005).
12. M. O. Alama, B. Y. Wua, Y. C. Chan and K. N. Tu, Acta Mater. 54, 613 (2006).
13. J. W. Nah, K. W. Paik and J. O. Suh, J. Appl. Phys. 94, 7560 (2003).
14. H. Y. Hsiao and C. Chen, Appl. Phys. Lett. 90(15), 152105 (2007).
15. C. Chen and K. N. Tu, Annu. Rev. Mater. Res. 40, 531 (2010).
16. H. Y. Chen, C. Chen and K. N. Tu, Appl. Phys. Lett. 93, 122103 (2008).
17. H. Y. Hsiao and C. Chen, Appl. Phys. Lett. 94, 092107 (2009).
18. Y. W. Chang, S. W. Liang and C. Chen, Appl. Phys. Lett. 89(3), 032103 (2006).
19. H. B. Huntington. Diffusion (American Society for Metals, 1973), Chap. 6.
20. D. G. Kima, J. W. Kim, S. S. Ha, B. I. Noh, J. M. Koo ,D. W. Park, M. W. Ko and S. B. Jung, J. Alloys Compd. 458, 253 (2008).
21. C. J. Meechan and G. W. Lehman, J. Appl. Phys. 33(2), 634 (1962).
22. K. Zeng and K. N. Tu, Materials Science and Engineering Reports, R38, 55 (2002).
23. R. W. Cahn and P. Haasen, Physical Metallurgy, forth ed. The Netherland: North Holland; 1996.
24. H. Y. Hsiao, S. W. Liang, M. F. Ku, C. Chen and D. J. Yao, J. Appl. Phys. 104, 033708 (2008).
25. I. A. Blech, Diffusional back flows during electromigration, Acta Mater. 46, 3717 (1998).
26. K. L. Lee, C. K. Hu and K. N. Tu, J. Appl. Phys. 78(7), 4428 (1995).
27. P. G. Shewmon, Diffusion in Solids (TMS, Warrendale, PA, 1989), Chap. 7.
28. D. V. Ragone. Thermodynamics of Materials (Wiley, New York, 1995), Vol. 2,
Chap. 8.
29. D. C. Yeh and H. B. Huntington, Phys. Rev. B. 53(15), 1469 (1984).
6.5 References
1. W. J. Choi, E. C. C. Yeh, K. N. Tu, J. Apple. Phys. 94, 5665 (2003).
2. C. Chen, H.M. Tong, K.N. Tu, Annual Reviews Materials Research, 40, 531 (2010).
3. Hu, C. K., Rodbell, K. P., Sullivan, T. D., Lee, K. Y. and Bouldin, D. P., IBM J. Res. Develop., 39, 465 (1995).
4. E.C.C. Yeh, W.J. Choi, K.N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett. 80, 580 (2002).
5. H. Ye, C. Basaran, and D. Hopkins, Appl. Phys. Lett. 82,1045 (2003).
6. S. H. Chiu, T. L. Shao, and C. Chen, Appl. Phys. Lett. 88, 022110 (2006)
7. A. T. Huang, A. M. Gusak, K. N. Tu, and Y.-S. Lai, Appl. Phys. Lett. 88,141911 (2006)
8. H. Y. Hsiao and C. Chen, Appl. Phys. Lett. 90, 152105 (2007).
9. H. Y. Hsiao, S. W. Liang, M. F. Ku, C. Chen, D. J. Yao, J. Apple. Phys. 104, 033708 (2008).
10. H. Y. Hsiao, C. Chen, Appl. Phys. Lett. 94 (2009) 092107.
11. H. Y. Chen, C. Chen, K. N. Tu, Appl. Phys. Lett. 93, 122103 (2008)
12. H. Y. Chen, C. Chen, J. Mater. Reserch. In press.
13. R. W. Cahn and P. Haassen, Physical Metallurgy (North, Holland) Chap. 7
14. F. W. Wulff, C. D. Breach, D. Stephan, Saraswati and K. J. Dittmer, EPTC 2004. Proceedings of 6th pp. 348-353
15. P. G. Shewmon, Diffusion in Solids, Second ed., TMS, Warrendale, Pa, 1989.
16. Phase diagram book.
17. K. Zeng JAP K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, K. N. Tu, J. Appl. Phys. 97, 024508 (2005).
18. J. Tardy, K. N. Tu, Phys. Rev. B. 32, 2070 (1985).
19. H. T. G. Hentzell, R. D. Thompson, K. N. Tu, J. Appl. Phys. 54, 6923 (1983).
20. D. V. Ragone, Thermodynamics of Materials (Wiley, New York, 1995), Vol. 2, Chap. 8.
21. J. H. Matlock and J. P. Stark, Acta Mater. 19, 923 (1971).
22. R. W. Cahn and P. Haassen, Physical Metallurgy (North, Holland) Chap. 7
23. F. W. Wulff, C. D. Breach, D. Stephan, Saraswati and K. J. Dittmer, EPTC 2004. Proceedings of 6th pp. 348-353
A.5 References
1. International Technology Roadmap for Semiconductors, Assembly and Packaging Section, Semiconductor Industry Association, San Jose, CA, p.4 (2003).
2. D. Suraski and K. Seeling, IEEE Trans. Electron. Packag. Manufact., 24, 244 (2001).
3. K. Nimmo, in Proc. Electron. Goes Green 2000+, Berlin, Germany, Sep., p.43 (2000).
4. K. J. Puttlitz, in Proc. Short Course, 50th Electron. Comp. Technol. Conf., Las Vegas, NV (2000).
5. H. Nawafune, K. Ikeda, H. Kitamura, S. Mizaunoto, T. Takeuchi, and K. Aoki, J. Surf. Fin. Soc. Japan., 49, 759 (1998).
6. S.Arai and T Watanabe, J. Surf. Fin. Soc. Japan., 49, 73 (1998).
7. T. Kondo, K. Obata, T. Takeuchi, and S. Masaki, Plat. Surf. Finish., February, 51 (1998).
8. S. Arai and T. Watanabe, Mater.Trans. JIM, 39, 439 (1998).
9. Y. Fujiwara, T. Narahara, H. Enomoto, K. Funada, and T. Omi, J. Surf. Fin. Soc. Japan., 49, 1316 (1998).
10. H. Nawafune, K. Shiba, S. Mizumoto, T. Takeuchi, and K. Aoki, J. Surf. Fin. Soc. Japan., 51, 1234 (2000).
11. S. Arai, N. Kaneko, and N. Shinohara, Electrochemistry, 69, 254 (2001).
12. M. Jordan, Trans. IMF., 75, 149 (1997).
13. H. Tanaka, M. Tanimoto, A. Matsuda, T. Uno, M. Kurihara, and S. Shiga, J. Electron. Mater., 28, 1216 (1999).
14. H. Nawafune, K. Ikeda, K. Shiba, S. Mizumoto, T. Takeuchi, and K. Aoki, J. Surf. Fin. Soc. Japan., 50, 923 (1999).
15. M. Fukuda, K. Hirakawa, and Y. Matsumoto, J. Surf. Fin. Soc. Japan., 50, 1125 (1999).
16. S. Arai and N. Kaneko, Denki Kagaku oyobi Kogyo Butsuri., 65, 1102 (1997).
17. S. Arai, N. Kaneko, and N. Shinohara, J. Surf. Sci. Soc. Japan., 22, 463 (2001).
18. F. Guo, S. Choi, J. O. Lucas, and K. N. Subramanian, J. Electron. Mater., 29, 10 (2000).
19. M. Jordan, Galvanotechnik., 92, 1225 (2001).
20. M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, John Wiley & Sons, New York (1998).
21. M. Schlesinger and M. Paunovic, Modern Electroplating, 4th edition, John Wiley & Sons, New York (2000).
22. I. Mizushima, P.T. Tang, H.N. Hansen, and M. A.J. Somers, Electrochimica Acta, 51, 888 (2005).
23. I. Mizushima, P.T. Tang, H.N. Hansen, and M. A.J. Somers, Electrochimica Acta, 51, 6182 (2006).
24. I. Baskaran, T.S.N. Sankara Narayanan, and A. Stephen, Materials Letters, 60, 1990 (2006).
25. B. Neveu, F. Lallemand, G. Poupon, and Z. Mekhalif, Applied Surface Science, 252, 3561 (2006).
26. S. Chieh Chang, J. Min Shieh, K. Cheng Lin, and B. Tong Dai, J. Vac. Sci. Technol. B. 20(4), 1311 (2002).
27. J. P. Healy and D. Pletcher, J. Electroanal. Chem., 338, 155 (1992).
28. T. O. Drews, J.C. Ganley, and R.C. Alkire, J. Electrochem. Soc., 150, C325 (2003).
29. E.E. Fardon, F.C. Walsh, and S.A. Campbell, J. Appl. Electrochem., 25, 574 (1995).
30. T.P. Moffat, B. Baker, D. Wheeler, and D. Jossell, Electrochem. Solid State Lett., 6, C59 (2003).
31. S. Arai, H. Akatsuka, and N. Kaneko, J. Electrochem. Soc., 150(10), C730 (2003).
32. S. Chieh Chang, J. Min Shieh, K. Cheng Lin, and B. Tong Dai, J. Vac. Sci. Technol. B, 20(6), 2233 (2002).
33. J. J. Kelly and A. C. West, J. Electrochem. Soc., 145, 3472 (1998).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊