跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/16 16:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳容瑩
研究生(外文):Jung-Ying Chen
論文名稱:利用對運鐵蛋白有標的作用之微脂粒傳遞反譯寡核苷酸之研究
論文名稱(外文):The study of antisense oligonucleotides delivery by Tf-targeted liposomes
指導教授:邱士娟邱士娟引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:Bcl-2反譯寡核苷陽離子性載體微脂粒標靶運輸
外文關鍵詞:Bcl-2antisense oligonucleotidecationic carrierliposometargeted delivery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對於癌症之治療,反譯寡核苷酸是十分引人注目的治療物質,是由短鏈的核苷酸組成,並設計成與特定的靶標mRNA序列互補,當反譯寡核苷酸特異地與與之互補的mRNA結合後,會干擾基因的表現,導至蛋白質的合成受抑制。
細胞凋亡是一種自然的生理機制,來選擇性的淘汰細胞,在細胞凋亡的過程中是藉由許多蛋白質之間的平衡所調控的,例如:Bcl-2。Bcl-2是一種對於抑制細胞凋亡很重要的蛋白質,許多癌細胞的異常增生是因為Bcl-2的過度表現。因此,為了降低癌細胞的Bcl-2的表現,給予標的細胞能夠抑制Bcl-2反譯寡核苷酸 (G3139) 為可能的辦法。
然而,反譯寡核苷酸在體內易被酵素、核酸酶破壞,且為帶負電的高分子量物質,使其不易穿透細胞膜。因此,本研究為改善反譯寡核苷酸的傳遞,而使用帶正電之脂質的系統,將G3139包覆至脂質載體中。此微脂粒由DC-Chol/egg-PC/PEG-DSPE以22.5:76:1.5 mol%組成,其粒徑大小平均為190.94±11.13 nm,表面電荷為4.07±3.18mV其包覆ODN的能力高達70%以上,粒子之膠體安定性可達十一週。為了增加標靶運輸的效果,可將運鐵蛋白當作配位體經後嵌入法修飾微脂粒。
在細胞攝入的實驗中,將帶有螢光的ODN/FITC包覆製不同處方之微脂粒,並給予細胞,利用流式細胞儀來定量攝入細胞的ODN含量。實驗結果可以發現進入細胞的ODN含量取決於給予細胞ODN的濃度;在競爭性實驗中,先給予有運鐵蛋白受體表現的K562細胞100μM的holo-transferrin,則有運鐵蛋白修飾的微脂粒的攝入受到了抑制。同時,利用西方墨點法來測定Bcl-2的蛋白質表現量,細胞之Bcl-2蛋白表現量確實因G3139的作用而受到抑制。
Antisense oligonucleotides (ODN) are attractively therapeutic agents for cancer therapy. They are short fragments of nucleic acids and designed to target the complementary mRNA sequence to specifically interfere with gene expression and inhibit encoded protein production.
Apoptosis is a physiological mechanism for selective elimination of cells, and regulated by the balance between many proteins during this process, such as Bcl-2, an essential inhibitory protein to apoptosis. Many cancer cells proliferate abnormally due to overexpression of Bcl-2. Therefore, to down-regulate the Bcl-2 expression, it is a potential strategy that delivered a phosphorothioate ODN (G3139) to Bcl-2 in targeting cells.
However, ODN are easily destroyed by enzymes and nucleases in vivo and negtive charged molecules with high molecular weight make them the ability across cell membranes is poor. In this study, to improve antisense delivery, we developed a cationic lipid system, encapsulating ODN in lipid vesicles. The liposomes made up of DC-Chol/egg-PC/ PEG-DSPE (22.5:76:1.5 mol%) containing G3139 with a mean diameter of 190.94±11.13nm, a zata potential of 4.07±3.18mV and showed colloidal stability can maintain up to 11 weeks. Encapsulation efficiency of ODN in the liposomes was up to 70%. In order to enhance the targeting effect, transferrin (Tf)-PEG-DSPE was inserted into the lipid bilayer by post-insertion.
Cell uptake of different formulations of liposomal ODN/FITC were observed by flow cytometry. The amount of ODN/FITC entering cells corresponds with the initial amount of ODN/FITC. In competition study, uptake of Tf-conjugated liposomes could be inhibited, when pre-treating free holo-transferrin 100μM to K562 cells, that were TfR positive . In the meantime, Bcl-2 protein level was evaluated by western blot to confirm G3139 work in selective cancer cells. The Bcl-2 protein level was down-regulation by G3139.
第一章 緒論 1
第一節 文獻探討 1
一、 癌症的基因治療 1
二、 反譯寡核苷酸 3
三、 基因傳遞系統 4
四、 標靶運輸系統 7
五、 細胞凋亡 9
六、 Bcl-2蛋白家族 11
第二節 研究動機 12
第二章 實驗材料與方法 13
第一節 實驗細胞及材料 13
一、 實驗細胞 13
二、 實驗藥品 14
三、 實驗儀器 17
第二節 實驗方法 18
一、 細胞培養 18
二、 細胞蛋白質之萃取及定量 20
三、 蛋白質SDS膠體電泳 22
四、 西方墨點法 23
五、 製備微脂粒 24
六、 氫硫基之定量分析 26
七、 微脂粒之包覆能力試驗 27
八、 細胞攝入試驗 28
九、 基因轉染試驗 30
十、 統計分析方法 31
第三章 實驗結果 32
第一部分 微脂粒之物理化學性質 32
一、 製備微脂粒之相關數據 32
二、 DC-Chol對微脂粒之粒徑大小及表面電荷影響 36
三、 注射針頭直徑對微脂粒粒徑大小之影響…………. 39
四、 乙醇濃度對微脂粒包覆能力及粒徑大小之影響 40
五、 ODN與脂質比例對微脂粒包覆能力 44
及粒徑大小之影響 44
六、 微脂粒之膠體安定性試驗 47
第二部分 微脂粒的體外試驗 52
一、 細胞的特質 52
二、 細胞攝入微脂粒之效力 54
三、 螢光顯微鏡之觀測 58
四、 基因轉染試驗 63
第四章 討論 73
第五章 結論 78
第六章 參考文獻 79
1.Kalyn, R (2007). Overview of targeted therapies in oncology. Journal of Oncology Pharmacy Practice 13: 199-205.
2.Crooke, ST (2000). Potential roles of antisense technology in cancer chemotherapy. Oncogene 19: 6651-6659.
3.Milhavet, O, Gary, DS, and Mattson, MP (2003). RNA Interference in Biology and Medicine. Pharmacological Reviews 55: 629-648.
4.Gimenez-Bonafe, P, Tortosa, A, and Perez-Tomas, R (2009). Overcoming drug resistance by enhancing apoptosis of tumor cells. Current Cancer Drug Targets 9: 320-340.
5.Croce, CM (2008). Oncogenes and cancer. New England Journal of Medicine 358: 502-511.
6.Ruan, J, Hajjar, K, Rafii, S, and Leonard, JP (2009). Angiogenesis and antiangiogenic therapy in non-Hodgkin''s lymphoma. Annals of Oncology 20: 413-424.
7.Morille, M, Passirani, C, Vonarbourg, A, Clavreul, A, and Benoit, JP (2008). Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 29: 3477-3496.
8.Rayburn, ER, and Zhang, R (2008). Antisense, RNAi, and gene silencing strategies for therapy: Mission possible or impossible? Drug Discovery Today 13: 513-521.
9.Yao, Y, Wang, C, Varshney, RR, and Wang, DA (2009). Antisense makes sense in engineered regenerative medicine. Pharmaceutical Research 26: 263-275.
10.Miller, KJ, and Das, SK (1998). Antisense oligonucleotides: Strategies for delivery. Pharmaceutical Science and Technology Today 1: 377-386.
11.Jarad, G, Simske, JS, Sedor, JR, and Schelling, JR (2003). Nucleic acid-based techniques for post-transcriptional regulation of molecular targets. Current Opinion in Nephrology and Hypertension 12: 415-421.
12.Reischl, D, and Zimmer, A (2009). Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine: Nanotechnology, Biology, and Medicine 5: 8-20.
13.Ichim, TE, et al. (2004). RNA interference: A potent tool for gene-specific therapeutics. American Journal of Transplantation 4: 1227-1236.
14.Dean, NM, and Frank Bennett, C (2003). Antisense oligonucleotide-based therapeutics for cancer. Oncogene 22: 9087-9096.
15.Chen, X, Dudgeon, N, Shen, L, and Wang, JH (2005). Chemical modification of gene silencing oligonucleotides for drug discovery and development. Drug Discovery Today 10: 587-593.
16.Dias, N, and Stein, CA (2002). Potential roles of antisense oligonucleotides in cancer therapy. The example of Bcl-2 antisense oligonucleotides. European Journal of Pharmaceutics and Biopharmaceutics 54: 263-269.
17.Juliano, R, Alam, MR, Dixit, V, and Kang, H (2008). Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Research 36: 4158-4171.
18.De Rosa, G, Quaglia, F, Bochot, A, Ungaro, F, and Fattal, E (2003). Long-term release and improved intracellular penetration of oligonucleotide-polyethylenimine complexes entrapped in biodegradable microspheres. Biomacromolecules 4: 529-536.
19.Gao, X, Kim, KS, and Liu, D (2007). Nonviral gene delivery: What we know and what is next. AAPS Journal 9.
20.Li, SD, and Huang, L (2007). Non-viral is superior to viral gene delivery. Journal of Controlled Release 123: 181-183.
21.Kim, Y, et al. (2009). Polymersome delivery of siRNA and antisense oligonucleotides. Journal of Controlled Release 134: 132-140.
22.Glodde, M, Sirsi, SR, and Lutz, GJ (2006). Physiochemical properties of low and high molecular weight poly(ethylene glycol)-grafted poly(ethylene imine) copolymers and their complexes with oligonucleotides. Biomacromolecules 7: 347-356.
23.Tranchant, I, Thompson, B, Nicolazzi, C, Mignet, N, and Scherman, D (2004). Physicochemical optimisation of plasmid delivery by cationic lipids. Journal of Gene Medicine 6.
24.Kearns, MD, Donkor, AM, and Savva, M (2008). Structure-transfection activity studies of novel cationic cholesterol-based amphiphiles. Molecular Pharmaceutics 5: 128-139.
25.Cardoso, ALC, et al. (2007). siRNA delivery by a transferrin-associated lipid-based vector: A non-viral strategy to mediate gene silencing. Journal of Gene Medicine 9: 170-183.
26.Dass, CR, and Choong, PFM (2006). Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: Lessons from gene therapy. Cancer Cell International 6.
27.Wacheck, V, and Zangemeister-Wittke, U (2006). Antisense molecules for targeted cancer therapy. Critical Reviews in Oncology/Hematology 59: 65-73.
28.Liu, B (2007). Exploring cell type-specific internalizing antibodies for targeted delivery of siRNA. Briefings in Functional Genomics and Proteomics 6: 112-119.
29.Yang, L, Li, J, Zhou, W, Yuan, X, and Li, S (2004). Targeted delivery of antisense oligodeoxynucleotides to folate receptor-overexpressing tumor cells. Journal of Controlled Release 95: 321-331.
30.Deonarain, MP (1998). Ligand-targeted receptor-mediated vectors for gene delivery. Expert Opinion on Therapeutic Patents 8: 53-69.
31.Yu, B, Zhao, X, Lee, JL, and Lee, RJ (2009). Targeted delivery systems for oligonucleotide therapeutics. AAPS Journal 11: 195-203.
32.Chiu, SJ, Liu, S, Perrotti, D, Marcucci, G, and Lee, RJ (2006). Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes. Journal of Controlled Release 112: 199-207.
33.Ogris, M, Brunner, S, Sch?ller, S, Kircheis, R, and Wagner, E (1999). PEGylated DNA/transferrin-PEI complexes: Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Therapy 6: 595-605.
34.Macedo, MF, and de Sousa, M (2008). Transferrin and the transferrin receptor: Of magic bullets and other concerns. Inflammation and Allergy - Drug Targets 7: 41-52.
35.Richardson, DR, Kalinowski, DS, Lau, S, Jansson, PJ, and Lovejoy, DB. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. BBA - General Subjects.
36.Tong, X, Kawabata, H, and Koeffler, HP (2002). Iron deficiency can upregulate expression of transferrin receptor at both the mRNA and protein level. British Journal of Haematology 116: 458-464.
37.Hsieh-Ma, ST, Shi, T, Reeder, J, and Ring, DB (1996). In vitro tumor growth inhibition by bispecific antibodies to human transferrin receptor and tumor-associated antigens is augmented by the iron chelator deferoxamine. Clinical Immunology and Immunopathology 80: 185-193.
38.Li, H, Sun, H, and Qian, ZM (2002). The role of the transferrin-transferrin-receptor system in drug delivery and targeting. Trends in Pharmacological Sciences 23: 206-209.
39.Danial, NN (2007). BCL-2 family proteins: Critical checkpoints of apoptotic cell death. Clinical Cancer Research 13: 7254-7263.
40.Call, JA, Eckhardt, SG, and Camidge, DR (2008). Targeted manipulation of apoptosis in cancer treatment. The Lancet Oncology 9: 1002-1011.
41.Marzo, I, and Naval, J (2008). Bcl-2 family members as molecular targets in cancer therapy. Biochemical Pharmacology 76: 939-946.
42.Tsujimoto, Y, and Shimizu, S (2000). Bcl-2 family: Life-or-death switch. FEBS Letters 466: 6-10.
43.Webb, A, et al. (1997). BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349: 1137-1141.
44.Pan, X, Chen, L, Liu, S, Yang, X, Gao, JX, and Lee, RJ (2009). Antitumor activity of G3139 lipid nanoparticles (LNPs). Molecular Pharmaceutics 6: 211-220.
45.Gantert, M, et al. (2009). Receptor-specific targeting with liposomes in vitro based on sterol-PEG1300 anchors. Pharmaceutical Research 26: 529-538.
46.Lakkaraju, A, Dubinsky, JM, Low, WC, and Rahman, YE (2001). Neurons Are Protected from Excitotoxic Death by p53 Antisense Oligonucleotides Delivered in Anionic Liposomes. Journal of Biological Chemistry 276: 32000-32007.
47.Fan, M, Xu, S, Xia, S, and Zhang, X (2008). Preparation of salidroside nano-liposomes by ethanol injection method and in vitro release study. European Food Research and Technology 227: 167-174.
48.Ha, Y, Jin, Y, and Xia, Y (2004). The Characterization of Cationic Fusogenic Liposomes Mediated Antisense Oligonucleotides into HeLa Cells. Drug Development and Industrial Pharmacy 30: 135-141.
49.Ko, YT, Bhattacharya, R, and Bickel, U (2009). Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. Journal of Controlled Release 133: 230-237.
50.Semple, SC, et al. (2001). Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: Formation of novel small multilamellar vesicle structures. Biochimica et Biophysica Acta - Biomembranes 1510: 152-166.
51.Wilson, A, et al. (2005). Targeted delivery of oligodeoxynucleotides to mouse lung endothelial cells in vitro and in vivo. Molecular Therapy 12: 510-518.
52.Tousignant, JD, et al. (2000). Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:Plasmid DNA complexes in mice. Human Gene Therapy 11: 2493-2513.
53.Meure, LA, Foster, NR, and Dehghani, F (2008). Conventional and dense gas techniques for the production of liposomes: A review. AAPS PharmSciTech 9: 798-809.
54.Ulrich, AS (2002). Biophysical aspects of using liposomes as delivery vehicles. Bioscience Reports 22: 129-150.
55.Wirth, GJ, Schandelmaier, K, Smith, V, Burger, AM, and Fiebig, HH (2007). Microarrays of 41 human tumor cell lines for the characterization of new molecular targets: Expression patterns of cathepsin B and the transferrin receptor. Oncology 71: 86-94.
56.Zhang, Z, Weinschenk, T, and Schluesener, HJ (2005). Uptake, cellular distribution and novel cellular binding proteins of immunostimulatory CpG oligodeoxynucleotides in glioblastoma cells. Molecular and Cellular Biochemistry 272: 35-46.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top