|
1. Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11: 142-201. 2. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, et al. (1983) Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308: 681-685. 3. Riley LW, Junio LN, Libaek LB, Schoolnik GK (1987) Plasmid-encoded expression of lipopolysaccharide O-antigenic polysaccharide in enteropathogenic Escherichia coli. Infect Immun 55: 2052-2056. 4. Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS, et al. (1983) Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J Clin Microbiol 18: 512-520. 5. Orskov F, Orskov I, Villar JA (1987) Cattle as reservoir of verotoxin-producing Escherichia coli O157:H7. Lancet 2: 276. 6. Schmidt H, Karch H, Beutin L (1994) The large-sized plasmids of enterohemorrhagic Escherichia coli O157 strains encode hemolysins which are presumably members of the E. coli alpha-hemolysin family. FEMS Microbiol Lett 117: 189-196. 7. Schmidt H, Beutin L, Karch H (1995) Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun 63: 1055-1061. 8. Moon HW, Whipp SC, Argenzio RA, Levine MM, Giannella RA (1983) Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun 41: 1340-1351. 9. Knutton S, Baldwin T, Williams PH, McNeish AS (1989) Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 57: 1290-1298. 10. Rosenshine I, Ruschkowski S, Stein M, Reinscheid DJ, Mills SD, et al. (1996) A pathogenic bacterium triggers epithelial signals to form a functional bacterial receptor that mediates actin pseudopod formation. EMBO J 15: 2613-2624. 11. Donnenberg MS, Kaper JB, Finlay BB (1997) Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends Microbiol 5: 109-114. 12. DeVinney R, Gauthier A, Abe A, Finlay BB (1999) Enteropathogenic Escherichia coli: a pathogen that inserts its own receptor into host cells. Cell Mol Life Sci 55: 961-976. 13. Campellone KG, Robbins D, Leong JM (2004) EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev Cell 7: 217-228. 14. de Grado M, Rosenberger CM, Gauthier A, Vallance BA, Finlay BB (2001) Enteropathogenic Escherichia coli infection induces expression of the early growth response factor by activating mitogen-activated protein kinase cascades in epithelial cells. Infect Immun 69: 6217-6224. 15. Chiu HJ, Lin WS, Syu WJ (2003) Type III secretion of EspB in enterohemorrhagic Escherichia coli O157:H7. Arch Microbiol 180: 218-226. 16. Clarke SC, Haigh RD, Freestone PP, Williams PH (2003) Virulence of enteropathogenic Escherichia coli, a global pathogen. Clin Microbiol Rev 16: 365-378. 17. Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB, et al. (1998) Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol Microbiol 30: 911-921. 18. Perna NT, Mayhew GF, Posfai G, Elliott S, Donnenberg MS, et al. (1998) Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect Immun 66: 3810-3817. 19. Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng YK, et al. (1998) The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28: 1-4. 20. Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54: 641-679. 21. Cornelis GR (2002) Yersinia type III secretion: send in the effectors. J Cell Biol 158: 401-408. 22. Galan JE (2001) Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17: 53-86. 23. Nguyen L, Paulsen IT, Tchieu J, Hueck CJ, Saier MH, Jr. (2000) Phylogenetic analyses of the constituents of Type III protein secretion systems. J Mol Microbiol Biotechnol 2: 125-144. 24. Gophna U, Ron EZ, Graur D (2003) Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312: 151-163. 25. Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4: 811-825. 26. Marlovits TC, Kubori T, Lara-Tejero M, Thomas D, Unger VM, et al. (2006) Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441: 637-640. 27. Wilson RK, Shaw RK, Daniell S, Knutton S, Frankel G (2001) Role of EscF, a putative needle complex protein, in the type III protein translocation system of enteropathogenic Escherichia coli. Cell Microbiol 3: 753-762. 28. Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, et al. (2001) Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3: 669-679. 29. Arnold R, Jehl A, Rattei T (2010) Targeting effectors: the molecular recognition of Type III secreted proteins. Microbes Infect 12: 346-358. 30. Sory MP, Cornelis GR (1994) Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 14: 583-594. 31. Anderson DM, Schneewind O (1997) A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278: 1140-1143. 32. Cheng LW, Anderson DM, Schneewind O (1997) Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Mol Microbiol 24: 757-765. 33. Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, et al. (2009) Sequence-based prediction of type III secreted proteins. PLoS Pathog 5: e1000376. 34. Lower M, Schneider G (2009) Prediction of type III secretion signals in genomes of gram-negative bacteria. PLoS One 4: e5917. 35. Samudrala R, Heffron F, McDermott JE (2009) Accurate prediction of secreted substrates and identification of a conserved putative secretion signal for type III secretion systems. PLoS Pathog 5: e1000375. 36. Akeda Y, Galan JE (2005) Chaperone release and unfolding of substrates in type III secretion. Nature 437: 911-915. 37. Page AL, Parsot C (2002) Chaperones of the type III secretion pathway: jacks of all trades. Mol Microbiol 46: 1-11. 38. Gauthier A, Finlay BB (2003) Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli. J Bacteriol 185: 6747-6755. 39. Neves BC, Mundy R, Petrovska L, Dougan G, Knutton S, et al. (2003) CesD2 of enteropathogenic Escherichia coli is a second chaperone for the type III secretion translocator protein EspD. Infect Immun 71: 2130-2141. 40. Wilharm G, Dittmann S, Schmid A, Heesemann J (2007) On the role of specific chaperones, the specific ATPase, and the proton motive force in type III secretion. Int J Med Microbiol 297: 27-36. 41. Yip CK, Finlay BB, Strynadka NC (2005) Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nat Struct Mol Biol 12: 75-81. 42. Phan J, Austin BP, Waugh DS (2005) Crystal structure of the Yersinia type III secretion protein YscE. Protein Sci 14: 2759-2763. 43. Wainwright LA, Kaper JB (1998) EspB and EspD require a specific chaperone for proper secretion from enteropathogenic Escherichia coli. Mol Microbiol 27: 1247-1260. 44. Elliott SJ, O'Connell CB, Koutsouris A, Brinkley C, Donnenberg MS, et al. (2002) A gene from the locus of enterocyte effacement that is required for enteropathogenic Escherichia coli to increase tight-junction permeability encodes a chaperone for EspF. Infect Immun 70: 2271-2277. 45. Abe A, de Grado M, Pfuetzner RA, Sanchez-Sanmartin C, Devinney R, et al. (1999) Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Mol Microbiol 33: 1162-1175. 46. Elliott SJ, Hutcheson SW, Dubois MS, Mellies JL, Wainwright LA, et al. (1999) Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli. Mol Microbiol 33: 1176-1189. 47. Creasey EA, Delahay RM, Bishop AA, Shaw RK, Kenny B, et al. (2003) CesT is a bivalent enteropathogenic Escherichia coli chaperone required for translocation of both Tir and Map. Mol Microbiol 47: 209-221. 48. Creasey EA, Friedberg D, Shaw RK, Umanski T, Knutton S, et al. (2003) CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149: 3639-3647. 49. Su MS, Kao HC, Lin CN, Syu WJ (2008) Gene l0017 encodes a second chaperone for EspA of enterohaemorrhagic Escherichia coli O157 : H7. Microbiology 154: 1094-1103. 50. Daniell SJ, Kocsis E, Morris E, Knutton S, Booy FP, et al. (2003) 3D structure of EspA filaments from enteropathogenic Escherichia coli. Mol Microbiol 49: 301-308. 51. Delahay RM, Knutton S, Shaw RK, Hartland EL, Pallen MJ, et al. (1999) The coiled-coil domain of EspA is essential for the assembly of the type III secretion translocon on the surface of enteropathogenic Escherichia coli. J Biol Chem 274: 35969-35974. 52. Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, et al. (2004) Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A 101: 3597-3602. 53. Ku CP, Lio JC, Wang SH, Lin CN, Syu WJ (2009) Identification of a third EspA-binding protein that forms part of the type III secretion system of enterohemorrhagic Escherichia coli. J Biol Chem 284: 1686-1693. 54. Pallen MJ, Beatson SA, Bailey CM (2005) Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol 5: 9. 55. Jackson MW, Plano GV (2000) Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FEMS Microbiol Lett 186: 85-90. 56. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62: 379-433. 57. Dreyfus G, Williams AW, Kawagishi I, Macnab RM (1993) Genetic and biochemical analysis of Salmonella typhimurium FliI, a flagellar protein related to the catalytic subunit of the F0F1 ATPase and to virulence proteins of mammalian and plant pathogens. J Bacteriol 175: 3131-3138. 58. Eichelberg K, Ginocchio CC, Galan JE (1994) Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J Bacteriol 176: 4501-4510. 59. Fan F, Macnab RM (1996) Enzymatic characterization of FliI. An ATPase involved in flagellar assembly in Salmonella typhimurium. J Biol Chem 271: 31981-31988. 60. Woestyn S, Allaoui A, Wattiau P, Cornelis GR (1994) YscN, the putative energizer of the Yersinia Yop secretion machinery. J Bacteriol 176: 1561-1569. 61. Auvray F, Ozin AJ, Claret L, Hughes C (2002) Intrinsic membrane targeting of the flagellar export ATPase FliI: interaction with acidic phospholipids and FliH. J Mol Biol 318: 941-950. 62. Pozidis C, Chalkiadaki A, Gomez-Serrano A, Stahlberg H, Brown I, et al. (2003) Type III protein translocase: HrcN is a peripheral ATPase that is activated by oligomerization. J Biol Chem 278: 25816-25824. 63. Akeda Y, Galan JE (2004) Genetic analysis of the Salmonella enterica type III secretion-associated ATPase InvC defines discrete functional domains. J Bacteriol 186: 2402-2412. 64. Jouihri N, Sory MP, Page AL, Gounon P, Parsot C, et al. (2003) MxiK and MxiN interact with the Spa47 ATPase and are required for transit of the needle components MxiH and MxiI, but not of Ipa proteins, through the type III secretion apparatus of Shigella flexneri. Mol Microbiol 49: 755-767. 65. Minamino T, Gonzalez-Pedrajo B, Kihara M, Namba K, Macnab RM (2003) The ATPase FliI can interact with the type III flagellar protein export apparatus in the absence of its regulator, FliH. J Bacteriol 185: 3983-3988. 66. Minamino T, MacNab RM (2000) Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol Microbiol 35: 1052-1064. 67. Silva-Herzog E, Dreyfus G (1999) Interaction of FliI, a component of the flagellar export apparatus, with flagellin and hook protein. Biochim Biophys Acta 1431: 374-383. 68. Zarivach R, Vuckovic M, Deng W, Finlay BB, Strynadka NC (2007) Structural analysis of a prototypical ATPase from the type III secretion system. Nat Struct Mol Biol 14: 131-137. 69. Blaylock B, Riordan KE, Missiakas DM, Schneewind O (2006) Characterization of the Yersinia enterocolitica type III secretion ATPase YscN and its regulator, YscL. J Bacteriol 188: 3525-3534. 70. Andrade A, Pardo JP, Espinosa N, Perez-Hernandez G, Gonzalez-Pedrajo B (2007) Enzymatic characterization of the enteropathogenic Escherichia coli type III secretion ATPase EscN. Arch Biochem Biophys 468: 121-127. 71. Quinaud M, Chabert J, Faudry E, Neumann E, Lemaire D, et al. (2005) The PscE-PscF-PscG complex controls type III secretion needle biogenesis in Pseudomonas aeruginosa. J Biol Chem 280: 36293-36300. 72. Sun P, Tropea JE, Austin BP, Cherry S, Waugh DS (2008) Structural characterization of the Yersinia pestis type III secretion system needle protein YscF in complex with its heterodimeric chaperone YscE/YscG. J Mol Biol 377: 819-830.
|