|
1. C. D. M. Fletcher, J. A. Bridge, P. C. W. Hogendoorn, & F. Mertens, “WHO Classification of Tumors of Soft Tissue and Bone,” Lyon: IARC Press, pp. 321-324, 2013. 2. J. Araya, R. Martinez, S. Niklander, M. Marshall, & A. Esguep, “Incidence and Prevalence of Salivary Gland Tumours in Valparaiso, Chile,” Medicina Oral, Patologia Oral y Cirugia Bucal, Vol. 20, No. 5, e532-e539, 2015. 3. L. Jurine, “Extrait des Expériences de Jurine sur les Chauves-Souris qu'on a Privé de la vue”, Journal de Physique, Vol. 46, pp. 145-148, 1798. 4. K. T. Dussik, “Über die Möglichkeit, Hochfrequente Mechanische Schwingungen als Diagnostisches Hilfsmitel zu Verwerten,” Zeitshrift für die Gesamte Neurologie und Psychiatrie, Vol. 174, No. 1, pp. 153-168, 1942. 5. W. D. Keidel, “Über eine neue Methode zur Registrierungger Volum Veranderungen des Herzens am Menschen,” Zeitschr. F. Kreslaufforschung, Vol. 39, pp257, 1950. 6. I. Edler & C. H. Hertz, "Use of Ultrasonic Reflectoscope for Continuous Recording of Movements of Heart Walls," K. F. S. L. Forhandlingar, Vol. 24, pp. 1-19, 1954. 7. R. Gramiak & P. M. Shah, “Echocardiography of the Aortic Root,” Investigative Radiology, Vol. 3, No. 5, pp. 356-366, 1968. 8. E. J. Białek, W. Jakubowski, & G. Karpińska, “Rule of Ultrasonography in Diagnosis and Differentiation of Pleomorphic Adenomas Work in Progress,” Head & Neck Surgery, Vol. 129, No. 3, pp. 923-933, 2003. 9. P. Katz, D. M. Hartl, & A. Guerre, “Clinical Ultrasound of the Salivary Glands,” Otolaryngologic Clinics of North America, Vol. 42, No. 6, pp. 973-1000, 2009. 10. C. J. R. Stewart, K. MacKenzie, G. W. McGarry, & A. Mowat, “Fine‐needle Aspiration Cytology of Salivary Gland: a Review of 341 Cases,” Diagnostic Cytopathology, Vol. 22, No. 3, pp. 139-146, 2000. 11. Q. Huang, F. Zhang, & X. Li, “Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: a Survey,” BioMed Research International, Vol. 2018, 2018. 12. S. Joo, Y. S. Yang, W. K. Moon, and H. C. Kim, “Computer Aided Diagnosis of Solid Breast Nodules: Use of an Artificial Neural Network Based on Multiple Sonographic Features,” IEEE Transactions on Medical Imaging, Vol. 23, No. 10, pp. 1292–1300, 2004. 13. K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny, “Computerized Diagnosis of Breast Lesions on Ultrasound,” Medical Physics, Vol. 29, No. 2, pp. 157–164, 2002. 14. C. M. Chen, Y. H. Chou, K. C. Han, G. S. Hung, C. M. Tiu, H. J. Chiou, & S. Y. Chiou, “Breast Lesions on Sonograms: Computer-aided Diagnosis with Nearly Setting Independent Features and Artificial Neural Networks,” Radiology, Vol. 226, No. 2, pp. 504–514, 2003. 15. P. M. Shankar, V. A. Dumane, J. M. Reid , V. Genis, F. Forsberg, C.W. Piccoli, & B. B. Goldberg, “Classification of Ultrasonic B-mode Images of Breast Masses Using Nakagami Distribution,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 48, No. 2, pp. 569–580, 2001. 16. B. Sahiner, H. P. Chan, M. A. Roubidoux, L. M. Hadjiiski, M. A. Helvie, C. Paramagul, J. Bailey, A. V. Nees, & C. Blane, “Malignant and Benign Breast Masses on 3D US Volumetric Images: Effect of Computer-Aided Diagnosis on Radiologist Accuracy,” Radiology, Vol. 242, No. 3, pp. 716–724, 2007. 17. M. Costantini, P. Belli, R. Lombardi, G. Franceschini, A. Mul`e, & L. Bonomo, “Characterization of Solid Breast Masses: Use of the Sonographic Breast Imaging Reporting and Data System Lexicon,” Journal of Ultrasound in Medicine, Vol. 25, No. 5, pp. 649–659, 2006. 18. R. M. Haralick & K. Shanmugam, “Textural Features for Image Classification,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 6, pp. 610-621, 1973. 19. W. Gómez, W. C. A. Pereira, & A. F. C. Infantosi, “Analysis of Co-Occurrence Texture Statistics as a Function of Gray-Level Quantization for Classifying Breast Ultrasound,” IEEE Transactions on Medical Imaging, Vol. 31, No. 10, pp. 1889-1899, 2012. 20. W. Gomez, L. Leija, A. V. Alvarenga, A. F. C. Infantosi, & W. C. A. Pereira, “Computerized Lesion Segmentation of Breast Ultrasound based on Marker‐Controlled Watershed Transformation,” Medical Physics, Vol. 37, No. 1, pp. 82-95, 2010. 21. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, & D. Forman, “Global Cancer Statisctics”, CA: A Journal for Clinicians, Vol. 61, No. 2, pp. 69-90, 2011. 22. H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, J. E. Darnell, “Overview of Neuron Structure and Function”, in Molecular Cell Biology (Ed. 4), Section 21.1, New York, W. H. Freeman, 2000. Retrieved from: https://www.ncbi.nlm.nih.gov/books/NBK21535/ at 7/4, 2019. 23. D. H. Hubel and T. N. Wiesel, “Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex”, Journal of Physiology, Vol. 160, No. 1, pp. 106-154, 1962. 24. K. Fukushima, “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position”, Biological Cybernetics, Vol. 36, No. 4, pp. 193-202, 1980. 25. Y. LeCun, L. Bottou, Y. Bengio, & P. Haffner, “Gradient-based Learning Applied to Document Recognition,” Proceedings of the IEEE, Vol. 86, No. 11,pp. 2278-2324, 1998. 26. V. Nair & G. E. Hinton, (2010), “Rectified Linear Units Improve Restricted Boltzmann Machines”, Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814, 2010. 27. X. Glorot, A. Bordes, & Y. Bengio, “Deep Sparse Rectifier Neural Networks,” Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315-323, June, 2011. 28. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, & R. R. Salakhutdinov, “Improving Neural Networks by Preventing Co-adaptation of Feature Detectors”, arXiv preprint arXiv:1207.0580, 2012. 29. R. Zhao, W. Ouyang, H. Li, & X. Wang, “Saliency Detection by Multi-context Deep Learning,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1265-1274, 2015. 30. A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, F. A. G. Osorio, “A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-cell Carcinoma Cancer Detection,” International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 403-410, 2013. 31. https://www.umiultrasound.com/ultrasound-machine/by-manufacturer/toshiba-canon-ultrasound/toshiba-canon-aplio-500/, Introduction of Toshiba Aplio-500. Last accessed at 7/4, 2019. 32. A. Dutta, A. Gupta, & A. Zisserman, “The VIA Annotation Software for Images, Audio and Video”, arXiv preprint arXiv:1904.10699, 2019. Last accessed at http://www.robots.ox.ac.uk/~vgg/software/via/, 7/15/2019. 33. O. Ronneberger, P. Fischer, & T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Cham., pp. 234-241, 2015. 34. G. Huang, Z. Liu, L. V. D. Maaten, & K. Q. Weinberger, “Densely Connected Convolutional Networks,” Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 4700-4708, 2017. 35. K. He, X. Zhang, S. Ren, & J. Sun, “Deep Residual Learning for Image Recognition,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016. 36. D. P. Kingma & J. Ba, “Adam: A Method for Stochastic Optimization,” 3rd Internal Conference of Learning Representation, San Diego, 2015.
|