跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:錢鴻章
研究生(外文):Hung Cheng Chien
論文名稱:光通訊/連接系統及其元件之設計
論文名稱(外文):Optical Communication/Interconnection System and Its Component Design
指導教授:郭鐘榮
指導教授(外文):Chung J. Kuo
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:56
中文關鍵詞:時閃時脈回復電路繞射式光學元件
外文關鍵詞:timing jitterCRCDOE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在一個理想的數位傳輸系統當中,其脈波上的每一個脈衝之間都會有個相同的時間間隔T (傳送速率的倒數),也就是每一個脈衝都會準時地到達某理想的時間點上。然而實際的情形並非如此,在一組真實的脈波上,我們會發現相對於某理想的時間點其脈衝經常會有延遲或者超前的情形。而這種時間的誤差便被稱為時閃(timing jitter)。時閃根據其發生的原因可以簡單劃分為兩類:系統性時閃及非系統性時閃。前者所產生的原因是跟訊號以及電路系統有關,而後者主要導因於雜訊本身。一般而言,系統性時閃所導致的累積效應會大於非系統性時閃。
在現今高速傳輸的時代裡,光傳輸系統通常都在固定的傳送距離安置一個光放大器(optical amplifier),一方面加強本身的訊號,另一方面藉由其中的時脈回復電路(clock recovery circuit, CRC)也可以重建其時脈以避免時閃效應傳至下一級甚至影響整個光傳輸系統。在論文當中,我們將提出一個新的CRC model來對訊號的時閃效應作精準地分析與探討。另一方面為了改善光傳輸系統的效率,我們也提出一個新的架構來設計繞射式光學元件(diffractive optical element, DOE),並得到更佳的結果。

In an ideal digital transmission system, the pulse stream should consist of a sequence of points equally spaced in time by a quantity T, the inverse of the pulse transmission rate. In practice, the points of actual sequence are randomly deviated from their desired positions. Such timing deviations called timing jitter is usually classified into two main categories; systematic jitter and nonsystematic jitter. The former depends on the transmission signal, while the latter is produced by noise source. It has been verified that systematic jitter accumulation exceed nonsystematic one's.
Nowadays, very high bit rate optical systems use optical amplifiers to enhance the transmission signal and recover its timing. Therefore, the influence of clock recovery circuit (CRC) inaccuracies is very significant in optical communication systems since a small timing error may represent a high fraction of the bit period. In this thesis, we proposed a new CRC model that can be more powerful to analyze the jitter performance and get the better optical communication results. On the other hand, in order to improve the optical communication efficiency we also proposed a new method to design diffractive optical elements (DOEs).

Contents
1 Introduction 1
2 Jitter analysis in optical communication system 4
2.1 Proposed CRC model.......................................5
2.2 Concepts for jitter computation ........................7
2.3 Theoretical analysis.....................................9
2.4 Real analysis...........................................16
2.5 Discussions.............................................23
3 Diffractive optical element design .........................25
3.1 Introduction............................................25
3.2 Proposed Scheme.........................................29
3.3 Simulation Results......................................32
3.4 Conclusions.............................................36
4 Conclusions and Future Researches 37
A 38
A.1 Introduction............................................39
A.2 2PFIR Filter Design Algorithm...........................39
A.3 Conclusion..............................................43

[1] F. Andreucci & U. Mengali, "Timing extraction in optical communications," Opt. Quantum Electron., vol. 10, pp. 445-458, 1978
[2] R. Forrester & D. Snyder, "Phase-tracking performance of direct detection optical receivers," IEEE Trans., vol. COM-21, pp. 1307-1309, 1973
[3] A. Luvison, G. Pirani, & U. Mengali,"A simple timing circuit for optical PCM repeaters," Opt. Quantum Electron., vol. 13, pp. 309-322, 1981
[4] U. Mengali & E. Pezzani, "Tracking properties of phase locked loop in optical communication systems," IEEE Trans., vol. COM-26, pp. 1811-1818, 1978
[5] P.R. Trischitta & P. Sannuti, "The jitter tolerance of ber optical regenerators,"IEEE Trans., vol. COM-35, pp. 1303-1308, 1987
[6] P.R. Trischitta & E.L. Varma, Jitter in digital transmission systems, Artech House,1989
[7] A. Cartaxo & A. Albuquerque, "Jitter in the square synchroniser on direct detection optical communications. Part I: Theoretical analysis," IEE Proc. J., vol. 141, no. 4,
pp. 209-219, 1994
[8] A. Cartaxo & A. Albuquerque, "Jitter in the square synchroniser on direct detection optical communications. Part II: Comparison with Franks and Bubrouski's results," IEE Proc. J., vol. 141, no.4, pp. 220-230, 1994
[9] A. Cartaxo & A. Albuquerque, "Jitter in the square synchroniser on direct detection optical communications. Part III: Numerical results concerning white circuit noise,"
IEE Proc. J., vol. 141, no.6, pp. 394-400, 1994
[10] W.R. Bennett, "Statistics of regenerative digital transmission," Bell Syst. Tech J., vol. 37, pp. 1501-1542, 1958
[11] S. Personick, "Receiver design for digital fiber optic communication systems, I and II," Bell Syst. Tech J., vol. 52, pp. 843-887, 1973
[12] D. Middleton, An introduction to statistical communication theory, McGraw-Hill, New York, 1960
[13] A. Papoulis, Probability, random variables and stochastic processes, 2nd ed., McGraw-Hill, New York, 1984
[14] J. Aunon & V. Chandrasekar, Introduction to probability and random processes, international ed., McGraw-Hill, New York, 1998
[15] A. Cartaxo & A. Albuquerque, "Jitter characterization in optical fiber communication," Prod. IEEE MELECON'89, pp. 565-568, 1989
[16] A. Cartaxo & A. Albuquerque, "Generalized Gaussian approach for the output process of a binary direct detection optical receiver," IEE Proc. J., Optoelectronic, vol.
137, no. 6, pp. 370-374, 1990
[17] A. Cartaxo & A. Albuquerque, "In uence of the various types of noise on jitter performance in binary direct detection optical communication," IEE Proc. J., vol.137, pp. 375-78, 1990
[18] A. Bellato & G. Cariolaro, "Time jitter in line regenerators with pattern dependent waveforms," Alta Frequenza, vol. 41, pp. 800-815, 1972
[19] L.E. Frank & J.P. Bubrouski, "Statistical properties of timing jitter in a PAM timing recovery scheme," IEEE Trans., vol. COM-22, pp. 913-920, 1974
[20] U. Mengali & G. Pirani, "Jitter accumulation in PAM systems," IEEE Trans., vol.COM-28, pp. 1172-1183, 1980
[21] A. Papouli, "A new algorithm in spectral analysis and band-limited extrapolation," IEEE Transactions on Circuits & systems,, vol. 22, pp. 735-742, 1975
[22] G. Strang, Introduction to Applied Mathematics, Wellesley, 1986
[23] F. Wyrowski & O. Bryngdahl, "Iterative Fourier-transform algorithm applied to computer holograms," Journal of Optical Society of America, Part A, vol. 5, pp. 1058-1065, 1988
[24] J.R. Fienup, "Iterative method applied to image reconstruction and to computer-generated holograms," Optical Engineering,, vol. 19, pp. 297-306, 1980
[25] J.W. Goodman, Introduction to Fourier Optics, 2nd ed., McGraw-Hill, New York,1996
[26] K. Balluder & M.R. Taghizadeh, "Optimized phase quantization for diffractive elements by use of a bias phase," Optics Letter, vol. 24, pp. 1756-1758, Dec. 1999
[27] G. Zhou, Y. Chen, Z. Wang & H. Song, "Genetic local search algorithm for optimization design of diractive optical elements," Applied Optics, vol. 38, pp. 4281-4290,1999
[28] J.R. Fienup, "Phase retrieval algorithms: A comparison," Applied Optics, vol. 21, pp. 2758-2769, 1982
[29] R.W. Gerchberg & W.O. Saxton, "A particaular algorithm for the determination of phase from image plane picture," Optik, vol. 35, pp. 237-246, 1972
[30] R.W. Gerchberg, "Superresolution through error energy reduction," Optics Acta, vol. 21, pp. 709-720, 1974
[31] D. Ait-Boudaoud & R. Cemes, "Modied sensitivity criterion for the design of powers-of-two FIR filters," Electroncis Letters, vol. 29, pp. 1467-1469, 1993
[32] N. Benvenuto, M. Marchesi & A. Uncini, "Applications of simulated annealing for the design of special digital filters," IEEE Transactions on Signal Processing, vol. 40, pp. 323-332, 1992
[33] D.R. Bull & D.H. Horrocks, "Primitive operator digital lters," IEE Proceedings-G, vol. 138, pp. 401-412, 1991
[34] R.E. Crochiere, "A new statistical approach to the coeÆcient word length problem for digital filters," IEEE Transactions on Circuits and Systems, vol. 22, pp. 190-196,
1975
[35] R. Hartley, "optimization of canonic signed digit multipliers for filter design," Proceedings of IEEE International Symposium on Circuits & Systems, vol. 4, pp. 1992-
1995, 1992
[36] K. Hwang, Computer Arithmetic: Principles, Architecture and Design, New York: Wiley, 1979
[37] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, pp. 671-680, May 1993
[38] D. Li, "Minimum number of adders for implementing a multiplier and its application to the design of multiplierless digital filters," IEEE Transactiosn on Circuits & Systems|II: Analog & Digital Signal Processing, vol. 42, pp. 453-460, 1995
[39] Y.C. Lim & S.R. Parker, "FIR filter design over a discrete powers-of-two coefficient space," IEEE Transactions on Acoustics, Speech & Signal Processing, vol. 31, pp. 583-591, 1983
[40] L.D. Milic & M.D. Lutovac, "Design of multiplierless elliptic IIR filters with a small quantization error," IEEE Transactions on Signal Processing, vol. 47, pp. 469-479,
1999
[41] H. Samueli, "An improved search algorithm for the design of multiplierless FIR filters with powers-of-two coefficients," IEEE Transactions on Circuits & Systems, vol. 36, pp. 1044-1047, 1989
[42] H. Shaeu, M.M. Jones, H.D. GriÆths & J.T. Taylor, "Improved design procedure for multiplierless FIR digital filters," Electronics Letters, vol. 27, pp. 1142-1144, 1991
[43] Q. Zhao & Y. Tadokoro, "A simple design of FIR filters with powers-of-two coefficients," IEEE Transactions on Circuits & Systems, vol. 35, pp. 566-570, 1988

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top