|
[1] F. Miescher. Ueber die chemische Zusammensetzung der Eiterzellen. Hoppe- Seyler’s medicinisch-chemische Untersuchungen, 4:441, 1871. [2] J. Watson, and F. Crick. A structure for Deoxyribose Nucleic Acid. Nature, 171:737, 1953. [3] V. Vijayanathan, T. Thomas, and T. J. Thomas. DNA Nanoparticles and Development of DNA Delivery Vehicles for Gene Therapy. Biochemistry, 41:14085, 2002. [4] T. Nakamura, R. Moriguchi, K. Kogure, A. Minoura, T. Masuda, H. Akita, K. Kato, H. Hamada, M. Ueno, S. Futaki, and H. Harashima. DNA Nanoparticles and Development of DNA Delivery Vehicles for Gene Therapy. Biol Pharm Bull., 29:1290, 2006. [5] CG. Baumann, V. Bloomfield , SB Smith , C Bustamante , MD Wang , SM Block. Stretching of single collapsed DNA molecules. Biophys J., 78:1965, 2000. [6] Y. Murayama, and M Sano. Force Measurements of a Single DNA Molecule in the Collapsing Phase Transition. J. Phys. Soc. Jpn., 70:345, 2000. [7] Y. Murayama, Y. Sakamaki, and M Sano. Elastic Response of Single DNA Molecules Exhibits a Reentrant Collapsing Transition. Phys. Rev. Lett., 90:018102, 2003. [8] H. Wada, Y. Murayama, and M Sano. Model of Elastic Responses of Single DNA molecules in the Collapsing Transition. Phys. Rev. Lett., 66:061912, 2002. [9] M. Ueda and K. Yoshikawa. Phase Transition and Phase Segregation in a Single Double-Stranded DNA Molecule. Phys. Rev. Lett., 77:2133, 1996. [10] Y. Burak,G. Ariel, and D. Andelman. Onset of DNA Aggregation in Presence of Monovalent and Multivalent Counterions. Biophys. J., 85:2100, 2003. [11] H. Wada, Y. Murayama, and M Sano. Model of Elastic Responses of Single DNA molecules in the Collapsing Transition. Phys. Rev. Lett., 72:041803, 2005. [12] I. Kulic and H. Schiessel. DNA Spools under Tension. Phys. Rev. Lett., 92:228101, 2004. [13] F. Solis and M. Olvera de la Cruz. Collapse of Flexible Polyelectrolytes in Multivalent Salt Solutions. J. Chem. Phys., 112:2030, 2000. [14] T. Nguyen, I. Rouzina, and B. Shklovskii. Reentrant condensation of DNA indeuced by multivalent cations. J. Chem. Phys., 112:2562, 2000. [15] F. Solis and M. Olvera de la Cruz. Flexible Linear Polyelectrolytes in Mul- tivalent Salt Solutions: Solubility Conditions. European Physics J. E, 4:143, 2001. [16] V. Bloomfield. DNA condensation by multivalent cations. Biopolymers, 354:269, 1997. [17] V. Bloomfield. DNA condensation. Curr. Opinion Struct. Biol., 6:334, 1996. [18] W. Earnshaw, and S. Harrison. DNA arrangement in isometric phage heads. Nature (London), 268:598, 1977. [19] L. Black, W. Newcomb, J. Boring, and J. Brown. Ion Etching of Bacteriophage T4: Support for a Spiral-Fold Model of Packaged DNA. Proc. Natl. Acad. Sci USA, 82:7960, 1985. [20] N Hud. Double-stranded DNA organization in bacteriophage heads: an al- ternative toroid-based model. Biophys. J., 69:1355, 1995. [21] I. Kulic, D. Andrienko, and M. Deserno. Twist-bend instability for toroidal DNA condensates. Europhys. Lett., 67:418, 2004. [22] J.Widom, and RL Baldwin. Cation-induced toroidal condensation of DNA studies with Co3+(NH3)6. J Mol Biol., 144:431, 1980. [23] AZ. Li, TY. Fan, and M. Ding. Formation study of toroidal condensation of DNA. Sci China B., 35:169, 1992. [24] V. Bloomfield. Condensation of DNA by multivalent cations: Considerations on mechanism. Biopolymers, 31:1471, 1991. [25] V. Vijayanathan, T. Thomas, A. Shirahata, and T. J. Thomas. DNA Conden- sation by Polyamines: A Laser Light Scattering Study of Structural Effects. Biochemistry, 40:13644, 2001. [26] T. Kral, M. Hof, and M. Langner. The Effect of Spermine on Plasmid Conden- sation and Dye Release Observed by Fluorescence Correlation Spectroscopy. Biol. Chem., 40:331, 2002. [27] D. Porschke. Dynamics of DNA Condensation. Biochemistry, 23:4821, 1984. [28] D. Chattoraj , L. Gosule, and J. Schellman. DNA condensation with polyamines. 2. Electron microscopic studies. J. Mol. Biol., 121:327, 1978. [29] S. Hamilton and D. Pettijohn. Properties of condensed bacteriophage T4 DNA isolated from Escherichia coli infected with bacteriophage T4. J Virol., 19:1012, 1976. [30] L. Gosule and J. Schellman. Compact form of DNA induced by spermidine. Nature., 29:259, 1976. [31] Z. Lin, C. Wang, X. Feng, M. Liu, J. Li, and C. Bai. The observation of the local ordering characteristics of spermidine-condensed DNA: atomic force microscopy and polarizing microscopy studies. Nucleic Acids Res., 26:3228, 1998. [32] P. Arscott , A. Li, and V. Bloomfield. Condensation of DNA by trivalent cations. 1. Effects of DNA length and topology on the size and shape of condensed particles. Biopolymers, 30:619, 1990. [33] M. Haynes, R. Garrett, and W. Gratzer. Structure of nucleic acid-poly base complexes. Biochemistry, 9:4410, 1970. [34] M. Hsiang, and R. Cole. Structure of histone H1-DNA complex: effect of histone H1 on DNA condensation. Proc. Natl. Acad. Sci. USA, 74:4852, 1977. [35] N. Hud, M. Allen, K. Downing, J. Lee, and R. Balhorn. Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic-force microscopy. Biochem. Biophys. Res. Commun., 193:1347, 1993. [36] U. Laemmli. Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proc. Natl. Acad. Sci. USA, 72:4288, 1975. [37] M. Cerritelli, N. Cheng, A. Rosenberg, C. McPherson, F. Booy, and A. Steven. Encapsidated conformation of bacteriophage T7 DNA. Cell. Proc. Natl. Acad. Sci. USA, 91:271, 1997. [38] http://www.fda.gov/cber/gene.htm [39] Y. Yoshikawa, K. Yoshikawa, and T. Kanbe. Formation of a Giant Toroid from Long Duplex DNA. Langmuir., 15:4085, 1999. [40] M. Frank-Kamenetskii, V. Anshelevich, and A. Lukashin. Polyelectrolyte Model of DNA. Sov. Phys. Uspekhi, 30:317, 1987. [41] E. Rajasekaran and B. Jayaram. Counterion condensation in DNA systems: The cylindrical Poisson-Boltzmann model revisited. Biopolymers, 34:443, 2004. [42] M. Manning. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties. J. Chem. Phys., 51:924, 1969. 1969. [43] M. Manning. Limiting laws and counterion condensation in polyelectrolyte solutions. IV. The approach to the limit and the extraordinary stability of the charge fraction. Biophys Chem., 7:95, 1977. [44] C. Anderson, M. Record. Polyelectrolyte Theories and their Applications to DNA. Jr. Annu. Rev. Phys. Chem., 33:191, 1982. [45] E. Kramarenko, A. Khokhlov, and K. Yoshikawa. Collapse of Polyelectrolyte Macromolecules Revisited Macromolecules., 30:3383, 1997. [46] R. Winkler, M. Gold, and P. Reineker. Collapse of Polyelectrolyte Macro- molecules by Counterion Condensation and Ion Pair Formation: A Molecular Dynamics Simulation Study. Phys. Rev. Lett., 80:3731, 1998. [47] M. Stevens, K. Kremer. The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study. J. Chem. Phys., 103:1669, 1995. [48] R. Dias, A. Pais, B. Lindman, and M. Miguel. Modeling of DNA Compaction by Polycations. J. Chem. Phys., 119:8150, 2003. [49] P. Crozier and M. Stevens. Simulations of single grafted polyelectrolyte chains: ssDNA and dsDNA. J. Chem. Phys., 118:3855, 2003. [50] M. Stevens, K. Kremer. Structure of salt-free linear polyelectrolytes. Phys. Rev. Lett., 71:2228, 1993. [51] M. Stevens, K. Kremer. Structure of salt-free linear polyelectrolytes. J. Chem. Phys., 103:1669, 1995. [52] M. Jonsson, and P. Linse. Polyelectrolyteˆamacroion complexation. II. Effect of chain flexibility. J. Chem. Phys., 115:10975, 2001. [53] A. Pais, M. Miguel, P. Linse, and B. Lindman. Polyelectrolytes confined to spherical cavities. J. Chem. Phys., 117:1385, 2002. [54] PY. Hsiao. Linear polyelectrolytes in tetravalent salt solutions. J. Chem. Phys., 124:044904, 2006. [55] PY. Hsiao. Chain morphology, swelling exponent, persistence length, like- charge attraction, and charge distribution around a chain in polyelectrolyte solutions: effects of salt concentration and ion size studied by molecular dy- namics simulations. Macromolecules., 39:7125, 2006. [56] Stevens M. Simple simulation of DNA condensation. Biophys J., 80:130, 2001. [57] Ou Zhaoyang and M. Muthukumar. Langevin dynamics of semiflexible poly- electrolytes: Rod-toroid-globule-coil structures and counterion distribution. J. Chem. Phys., 123:074905, 2005. [58] I. Miller, M. Keentok, G. Pereira, D. Williams. Semiflexible polymer con- densates in poor solvents: Toroid versus spherical geometries. Phys. Rev. E, 71:031802, 2005. [59] Y. Takenaka, K. Yoshikawa, Y. Yoshikawa, Y. Koyama, T. Kanbe. Morpho- logical variation in a toroid generated from a single polymer chain. J. Chem. Phys., 123:014902, 2005. [60] SB. Smith , L Finzi , C. Bustamante. Direct mechanical measurement of the elasticity of single DNA molecules by using magnetic beads. Science, 258:1122, 1992. [61] SB. Smith , Y. Cui , C. Bustamante. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science, 271:795, 1996. [62] HG. Hansma. Properties of biomolecules measured from atomic-force micro- scope images: a review. J. Struct. Biol., 119:99, 1997. [63] C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith. Entropic elasticity of ¸-phage DNA. Science., 265:1599, 1994. [64] M D Wang, H Yin, R Landick, J Gelles, and S M Block. Stretching DNA with optical tweezers. Biophys J., 72:1335, 1997. [65] Q. Liao, A. Dobrynin, and M. Rubinstein. Molecular Dynamics Simulations of Polyelectrolyte Solutions: Nonuniform Stretching of Chains and Scaling Behavior. Macromolecules., 36:3386, 2003. [66] R. Zhang and B. Shklovskii. The pulling force of a single DNA molecule condensed by spermidine. Physica A, 349:563, 2005. [67] F. Ritort, S. Mihardja, S. B. Smith, and C. Bustamante. Condensation transi- tion in DNA-Polyaminoamide dendrimer fibers studied using optical tweezers. Phys. Rev. Lett., 96:118301, 2006. [68] R. Franklin and R. Gosling. Molecular Configuration in Sodium Thymonu- cleate. Nature, 171:740, 1953. [69] D. Elson and E. Chargaff. On the desoxyribonucleic acid content of sea urchin gametes. Experientia, 8:143, 1952. [70] E. Chargaff, R. Lipshitz, and C. Green. Composition of the desoxypentose nucleic acids of four genera of sea-urchin. J Biol Chem., 195:155, 1952. [71] E. Chargaff, R. Lipshitz, C. Green, and M. Hodes. The composition of the deoxyribonucleic acid of salmon sperm. J Biol Chem., 192:223, 1951. [72] E. Chargaff, R. Lipshitz, C. Green, and M. Hodes. Some recent studies on the composition and structure of nucleic acids. J Cell Physiol Suppl., 38:41, 1951. [73] B. Magasanik, E. Vischer, R. Doniger, D. Elson, and E. Chargaff. The sepa- ration and estimation of ribonucleotides in minute quantities. J Biol Chem., 186:37, 1950. [74] E. Chargaff. Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia, 6:201, 1950. [75] R. Hockney, and J. Eastwood. Computer simulation using particles. McGraw- Hill, New York, 1981. [76] Oppenheim, A. V. and R.W. Schafer. Discrete-Time Signal Processing. En- glewood Cliffs, NJ: Prentice-Hall, 1989. [77] Kenneth Barbalace http://klbprouctions.com/ Periodic Table of Elements, Sorted by Ionic Radius. EnvironmentalChemistry.com. 1995 - 2007. Accessed on-line: http://EnvironmentalChemistry.com/yogi/periodic/ionicradius.html [78] E. Clementi and D. L. Raimondi. Atomic Screening Constants from SCF Functions. J. Chem. Phys., 39:2686, 1963. [79] J. Slater. Atomic Radii in Crystals. J. Chem. Phys., 41:3199, 1964. [80] J. Widom and R. L. Baldwin. Cation-indunced toroidal condensation of DNA: Studies with Co3+(NH3)6 J. Mol. Biol., 144:431, 1980. [81] Y. Murayama, H.Wada, and M. Sano. Internal Fricition of a Single Condensed DNA: Dynamic Force Measurements Using Optical Tweezers. Unpublished paper. [82] N. K. Lee and D. Thirumalai. Pulling-Speed-Dependent Force-Extension Por- files for Semiflexible chains Biophys J., 86:2641, 2004. [83] M. Saminathan, T. Antony, A. Shirahata, L. H. Sigal, T. Thomas, and T. J. Thomas. Ionic and Structural Specificity Effects of Natural and Synthetic Polyamines on the Aggregation and Resolubilization of Single-, Double-, and Triple-Stranded DNA. Macromolecules., 28:8759, 1995. [84] O. Kratky, and G. Porod. R¨ontgenuntersuchung gel¨oster Fadenmolek¨ule Rec. Trav. Chim. Pays-Bas., 68:1106, 1949. [85] J. Marko and E. Siggia. Stretching DNA. Macromolecules., 28:8759, 1995. [86] T. Odijk. Stiff chains and filaments under tension. Macromolecules., 28:7016, 1995. [87] C. Bouchiat, M. Wang, J. Allemand, T. Strick, S. Block, and V. Croquette. Estimating the persistence length of a worm-like chain molecule from force- extension measurements. Biophys J., 76:409, 1999.
|