跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.13) 您好!臺灣時間:2025/11/23 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃仍鈺
研究生(外文):Reng-Yu Huang
論文名稱:煙霧箱中特性測試及臭氧前驅物光化反應性之初步研究
論文名稱(外文):A preliminary study of characteristic and their ozone precursors of using smog chamber photochemical reactivity
指導教授:謝祝欽謝祝欽引用關係
指導教授(外文):Chu-Chin Hsieh
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程技術研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:125
中文關鍵詞:煙霧箱牆效應牆吸附
外文關鍵詞:smog chamberwall effectswall adsorption
相關次數:
  • 被引用被引用:2
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本研究建構一座室內煙霧箱(smog chamber),探討追蹤劑於煙霧箱中之特徵及衰退特性,再進行光照實驗探討臭氧前驅物之光化反應。煙霧箱內部基底採用不鏽鋼板作成,以Teflon袋圍成兩個容積各為1 m3的光化反應室,外圍圍以八邊形之空間,兩邊各裝設二十支紫外燈管模擬日照。此外,並加裝良好空調系統,以控制溫度。
研究方法分為三方面,其一乃將新鮮空氣抽引至煙霧箱內,瞭解煙霧箱之批次式及連續式反應特徵;其二乃在無照度情況下,探討NOx、CO、NMHC、O3的衰退 (Decay) 情形,進而評估牆效應(wall effects)之影響。
其三乃是在紫外光燈照射下使異戊二烯光化反應,進行VOCs、NOx、CO、NMHC及臭氧的濃度變化連續監測。NOx、CO、O3以API型分析儀器進行分析;NMHC以改良型GC-14 B進行分析;VOCs是以GC(6890)/ FID進行分析;醛類則是以高效液相層析儀(HPLC)進行分析。
煙霧箱內牆效應之吸附(wall adsorption)情形,NO、NO2及CO平均濃度值並無明顯變化,臭氧損失率為8 10-5 min-1;NMHC衰退速率為4 10-4 min-1。在批次式反應特性方面,THC、Methane和NMHC在第90分鐘前濃度呈衰退趨勢,在第90分鐘後煙霧箱表面達吸附飽和。在連續式反應特性方面,每間隔10分鐘整理的時間與濃度對數圖,其k值以(min-1)為單位,THC為457;Methane為198;NMHC為260;每間隔30分鐘整理的時間與濃度對數圖,其k值以(min-1)為單位,THC為540;Methane為234;NMHC為306。在量測值及推估值相關性方面,其R2皆大於0.8以上。在異戊二烯與其氧化產物之關係方面,照度為12.4 μW/cm2且溫度維持在28 2℃條件下,NO初始濃度為50 ppb時,臭氧濃度最高值為36.3 ppb,MACR和MVK產量比例為2.2:1;NO初始濃度為100 ppb時,臭氧濃度最高值為31 ppb時,MACR和MVK比例分別為(6 ~ 7.8):1。由異戊二烯化學反應機制推估OH產量方面,在NO初始濃度為50 ppb時,OH基產量範圍為0.8 ~1.6;在NO初始濃度為100 ppb時,OH基產量範圍為0.7 ~1.5。假設OH基產量主要來自於異戊二烯-臭氧反應方面,異戊二烯濃度為8 ppb時,利用Paulson et al. (1998)及Carter et al. (1996)之速率常數求得之OH產量範圍,以cm-3為單位,分別為4.5*104 ~ 1.4*105及1.1*108 ~ 3.3*108。
本結果為應用室內煙霧箱探討光化反應特性的初步研究,可作為進一步探討各種VOCs光化反應特徵及提供光化模式瞭解VOCs反應性實驗機制與預估光煙霧產量與臭氧間關係之參考。
Abstract
This paper presents a study of flow characteristic and photochemical reactivity of ozone precursors using a pilot-scale smog chamber. The interior wall material of chamber is made of Teflon film with the size of 1-m3. The chamber is irradiated by 40 sets of 30-W UV light sources and aluminum external reflectors surrounding the chamber are used to enhance the light intensity evenly.
Primarily, the fresh air contained in the smog chamber in the dark (without UV light) was conducted to evaluate the chamber decay and wall effects. Secondly, tracer is used to describe the flow characteristic. Thirdly, the irradiation of compounds with UV light source was performed to assess ozone formation potential of isoprene.
Pollutants include NO, NO2, CO, VOCs and carbonyl were monitored in-suit by means of analyzer, GC-MS and HPLC. The decay for NO, NO2 and CO are not significantly. The loss rate of O3 and NMHC are 8 10-5 min-1 and 4 10-4 min-1, respectively. In batch flow characteristic, THC, methane and NMHC are saturated in ninety percents. In continuous flow characteristic, the decay constants (k) of THC, methane and NMHC in min-1 are 457-540, 198-234 and 260-306, respectively. The relationship between isoprene and oxidation production (Methacrolein and Methyl vinyl ketone) at radiation intensity of 12.4 W / cm2 are studied. The yields of Methacrolein (MACR) and Methyl vinyl ketone (MVK) are 2.2: 1 and their OH radicals yield ranges are 0.8-1.6 when NO initial concentrations are 50 ppb. The yields of MACR and MVK are 6-7.8: 1 and their OH radicals yield ranges are 0.7-1.5 when NO initial concentrations are 100 ppb.
This study can provide us with a better means for evaluation of photochemical reactions. Furthermore, smog chamber can study the reactivities of different volatile organic compounds (VOCs) from a variety of oxygenated fuel and emission sources.
目 錄
中文摘要-------------------------------------------------------------------------------- i
英文摘要-------------------------------------------------------------------------------- iii
致謝-------------------------------------------------------------------------------------- v
目錄-------------------------------------------------------------------------------------- vi
表目錄----------------------------------------------------------------------------------- ix
圖目錄----------------------------------------------------------------------------------- x
第一章 前言----------------------------------------------------------------------- 1-1
1.1 研究動機----------------------------------------------------------------- 1-1
1.2 研究內容----------------------------------------------------------------- 1-3
第二章 文獻回顧----------------------------------------------------------------- 2-1
2.1 煙霧箱研究-------------------------------------------------------------- 2-1
2.1.1 國外煙霧箱研究-------------------------------------------------------- 2-1
2.1.2 國內煙霧箱研究-------------------------------------------------------- 2-7
2.2 光化學反應性理論----------------------------------------------------- 2-8
2.2.1 基本理論----------------------------------------------------------------- 2-8
2.2.2 臭氧形成機制----------------------------------------------------------- 2-9
2.2.3 臭氧研究現況----------------------------------------------------------- 2-10
2.2.4 臭氧反應性理論-------------------------------------------------------- 2-11
2.3 大氣中VOCs之氣相化學反應機制-------------------------------- 2-14
2.3.1 自然源VOCs的化學反應機制-------------------------------------- 2-14
2.4 由碳氫化合物濃度變化推估OH基濃度-------------------------- 2-19
2.4.1 由碳氫化合物推估OH基濃度-------------------------------------- 2-19
2.4.2 由烯類化合物推估OH基濃度-------------------------------------- 2-23
2.4.3 由炔類化合物推估OH基濃度-------------------------------------- 2-25
第三章 研究方法----------------------------------------------------------------- 3-1
3.1 研究流程----------------------------------------------------------------- 3-1
3.2 室內煙霧箱之建構----------------------------------------------------- 3-2
3.3 實驗方法與步驟-------------------------------------------------------- 3-3
3.4 分析儀器及設備-------------------------------------------------------- 3-5
3.4.1 揮發性有機物分析----------------------------------------------------- 3-5
3.4.2 醛酮類的分析----------------------------------------------------------- 3-7
3.4.3 非甲烷碳氫化合物分析----------------------------------------------- 3-10
3.4.4 氮氧化物分析----------------------------------------------------------- 3-12
3.4.5 一氧化碳分析----------------------------------------------------------- 3-13
3.4.6 臭氧分析----------------------------------------------------------------- 3-14
3.4.7 其他設備----------------------------------------------------------------- 3-16
第四章 結果與討論-------------------------------------------------------------- 4-1
4.1 煙霧箱特性測試------------------------------------------------------- 4-1
4.1.1 批次式反應-------------------------------------------------------------- 4-1
4.1.2 連續式反應-------------------------------------------------------------- 4-5
4.1.3 煙霧箱實驗數據驗證-------------------------------------------------- 4-7
4.2 煙霧箱牆效應及衰退-------------------------------------------------- 4-8
4.3 煙霧箱中異戊二烯之光化反應潛勢-------------------------------- 4-10
4.3.1 異戊二烯氧化產物之種類-------------------------------------------- 4-10
4.3.2 各物種之濃度趨勢----------------------------------------------------- 4-11
4.3.3 國外異戊二烯氧化產物之研究-------------------------------------- 4-13
4.3.4 由異戊二烯推估OH基產量----------------------------------------- 4-15
第五章 結論與建議-------------------------------------------------------------- 5-1
5.1 結論----------------------------------------------------------------------- 5-1
5.2 建議----------------------------------------------------------------------- 5-3
參考文獻
自傳
表 目 錄
表1.2-1 國外進年來煙霧箱研究概況------------------------------------------1-4
表2.1-1 煙霧箱物理特性-------------------------------------------------------- 2-27
表2.2-1 最大增量反應(MIR)反應性尺度資料表------------------------2-28
表2.4-1 三種烯類OH基產量的實驗條件和結果------------------------- --2-29
表3.1-1 實驗儀器設備概況 3-17
表3.3-1 煙霧箱實驗清單 3-18
表3.4-1 VOCs之檢量線方程式與其相關性 3-19
表3.4-2 VOCs之準確度、精密度及MDL 3-20
表3.4-3 醛酮類檢量線方程式與其相關性 3-21
表3.4-4 醛酮類之準確度、精密度及MDL 3-22
表3.4-5 THC、Methane和NMHC檢量線方程式與其相關性 3-23
表3.4-6 THC、Methane和NMHC之準確度、精密度及MDL 3-23
表3.4-7 NO多點校正記錄表 3-24
表3.4-8 CO多點校正記錄表 3-25
表3.4-9 O3多點校正記錄表 3-26
表3.4-10煙霧箱材料(Teflon PTFE)之特性 3-27
表4.2-1 無照度煙霧箱衰退實驗之量測值 4-19
表4.2-2 Loss of compounds at surfaces of the chamber 4-19
表4.3-1 煙霧箱中測得VOCs物種---------------------------------------------4-20
表4.3-2 煙霧箱實驗量測值 4-21
表4.3-3 煙霧箱實驗量測值 4-21
表4.3-4 煙霧箱實驗量測值 4-22
表4.3-5 Summary of OH yields 4-23
表4.3-6 Calculation of OH yields 4-24
表4.3-7 異戊二烯化學反應機制 4-25
圖 目 錄
圖2.3-1 OH radical-異戊二烯反應機制 2-30
圖2.3-2 OH radical-異戊二烯反應機制(續) 2-31
圖2.4-1 Kappel 和Schauinsland兩地的benzene、toluene、
o-xylene、SF6和NOx的變化圖(05/06/96)。細線為NOx
每3 分鐘測值--------------------------------------------------2-32
圖2.4-2 在Xk(Kappel)和Xs(Schauinsland)兩地量測OH
(KOH)與不同碳氫化合物的速率係數(rate coefficient)
半對數圖------------------------------------------------------ 2-33
圖2.4-3 2,3-dimethyl-2-butene,2-methyl-2-butene和trans-2-butene
光解之OH基、臭氧濃度對應時間圖譜 2-34
圖2.4-4 OH基濃度對應2,3-dimethyl-2-butene與臭氧反應所得
臭氧濃度圖譜 2-35
圖2.4-5 OH基濃度與時間關係圖 2-35
圖3.1-1 煙霧箱研究流程圖 3-28
圖3.2-1 煙霧箱透視圖 3-29
圖3.3-1 採樣流程圖 3-30
圖3.4-1 總碳氫化合物及甲烷含量檢測方法示意圖 3-31
圖3.4-2 典型UVX-36之偵測波長分佈情形 3-32
圖4.1-1 非理想狀態下反應槽差異 4-26
圖4.1-2 (a)至(c)為每10分鐘之THC、Methane和
NMHC於煙霧箱中之批次式反應特性分析 4-27
圖4.1-3 (a)至(c)為每30分鐘之THC、Methane和NMHC於
煙霧箱中之批次式反應特性分析 4-28
圖4.1-4 (a)至(c)為每60分鐘之THC、Methane和NMHC
於煙霧箱中之批次式反應特性分析 4-29
圖4.1-5 (a)至(c)為每30分鐘樣品注入之出、入口及其各
對應底座的點之THC、Methane和NMHC於煙霧箱
中之批次式反應特性分析 4-30
圖4.1-6 (a)至(c)為每30分鐘樣品注入之出、入口及其各
對應底座的點之THC、Methane和NMHC於煙霧箱中
之批次式反應特性分析 4-31
圖4.1-7 (a)至(c)為THC、Methane和NMHC於煙霧箱中
之連續式反應特性分析濃度-時間圖譜 4-32
圖4.1-8 (a)至(c)為每10分鐘之THC、Methane和NMHC於
煙霧箱中之連續式反應特性分析濃度-時間圖譜 4-33
圖4.1-9 (a)至(c)為每30分鐘之THC、Methane和NMHC於
煙霧箱中之連續式反應特性分析濃度-時間圖譜 4-34
圖4.2-1 無照度煙霧箱中背景空氣NOx濃度 4-35
圖4.2-2 無照度煙霧箱中背景空氣臭氧濃度 4-35
圖4.2-3 無照度煙霧箱中背景空氣CO濃度 4-36
圖4.2-4 無照度煙霧箱中背景空氣NMHC濃度 4-36
圖4.2-5 無照度煙霧箱中臭氧濃度的牆吸附(wall adsorption) 4-37
圖4.2-6 無照度煙霧箱中NMHC濃度的牆衰退(wall loss) 4-37
圖4.3-1 (a)為NO初始濃度50 ppb;(b)(c)為NO初始濃度
100 ppb在煙霧箱中逐時分佈------------------------------4-38
圖4.3-2 (a)至(c)為初始異戊二烯8 ppb時之主要氧化物種
及臭氧濃度在煙霧箱中逐時分佈情形--------------------4-39
圖4.3-3 (a)至(b)為甲醛、乙醛在不同NO濃度下於煙霧箱
中逐時分佈情形---------------------------------------------4-40
參考文獻
1. Altshuller, A. P., “Production of aldehydes as primary emissions and secondary atmospheric reaction of alkenes and alkanes during the night and early morning hours,” Atmospheric Environment, Vol. 27A, No. 1, pp. 21-32 (1993).
2. Anderson, L. G., et al., “Sources and sinks of formaldehyde and acetaldehyde: an analysis of Denver’s ambient concentration data,” Atmospheric Environment, Vol. 25, No. 12, pp. 2113-2123 (1996).
3. Aschmann, S. M., J. Arey and R. Atkinson, “OH radical formation from the gas-phase reactions of O3 with methacrolein and methyl vinyl ketone,” Atmospheric Environment, Vol. 30, No. 17, pp. 2939-2943 (1996).
4. Atkinson, R. and S. M. Aschmann, “Rate constants for the reactions of O3 and OH radicals with a series of alkynes,” International Journal of Chemical Kinetics, Vol. 19, pp.259-268 (1984).
5. Atkinson, R., C. T. Ernesto and S. M. Aschmann, “Products of the gas-phase reactions of a series of 1-alkenes and 1-methylcyclohexane with the OH radical in the presence of NO,” Environmental Science Technology, Vol. 29, No. 6, pp.1674-1680 (1995).
6. Atkinson, R., C. T. Ernesto and S. M. Aschmann, “Products of the gas-phase reactions of O3 with alkenes,” Environmental Science Technology, Vol. 29, No. 7, pp.1860-1866 (1995).
7. Becker, K. H. (ed.), “The European photoreactor,” Report No. EV5V-CT92-0059 Prepared for Institute of Physical Chemistry, Bergische Universitat-GH Wuppertal (1998).
8. Becker, K. H. (ed.), “R & D programme environment and climate area: environmental technology topic: tropospheric physics chemistry,” Report No. ENV4-CT95-0011 Prepared for Institute of Physical Chemistry, Bergische Universitat-GH Wuppertal (1999).
9. Biesenthal, T. A. et al., “A study of relationships between isoprene, its oxidation products, and ozone, in the lower Fraser Valley, BC,” Atmospheric Environment, Vol. 31, No. 14, pp. 2049-2058 (1997).
10. Blanchard, C. L. (ed.), “The use of ambient data to corroborate analyses of ozone control strategies,” Report No. STI-94030-1433-FR Prepared for U.S. Environmental Protection Agency (1994).
11. Carter, W. P. L., et al., “Experimental investigation of chamber-development radical source,” International Journal of Chemical Kinetics, Vol. 14, pp. 1071-1103 (1982).
12. Carter, W. P. L., et al., “Development of ozone reactivity scales for volatile organic compounds,” Air Waste Management Association, Vol. 44, pp. 881-899 (1994).
13. Carter, W. P. L. and W. L. Fredrick, ”Evaluation of detailed gas-phase atmospheric reaction mechanism using environmental chamber data,” Atmospheric Environment, Vol. 25A, No. 12, pp. 2771-2806 (1991).
14. Carter, W. P. L., et al., “Environmental chamber study of maximum incremental reactivities of volatile organic compounds,” Atmospheric Environment, Vol. 29, No. 18, pp. 2499-2511 (1995).
15. Carter, W. P. L., et al., “Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOx,” International journal of chemical kinetics, Vol. 28, pp. 497-530 (1996).
16. Chang, T. Y. and M. J. Suzio, “Assessing ozone-precursor relationships based on a smog production model and ambient data,” Journal of Air Waste Management Association, Vol. 45, pp. 20-28 (1995).
17. Chang, T. Y., B. I. Kelly and N. A. Kelly, “Modeling smog chamber measurements of vehicle exhaust reactivities,” Journal of Air Waste Management Association, Vol. 49, pp. 57-63 (1998).
18. Chang, T. Y., B. I. Nance and N. A. Kelly, “Modeling smog chamber measurements of incremental reactivities of volatile organic compounds,” Atmospheric Environment, Vol. 33, pp. 4695-4708 (December 1999).
19. Eisel, F. L., et al., “Intercomparison of tropospheric OH and ancillary trace gas measurements at Fritz peak observatory,” Journal of Geophysical Research, Vol. 99, pp.18605-18626 (1994).
20. Grosjean, E., E. L. Williams Ⅱand D. Grosjean, “Ambient levels of formaldehyde and acetaldehyde in Atlanta, Georgia,” Journal of Air and Waste Management, Vol. 43, pp. 469-474 (April 1993).
21. Grosjean, E., et al., “Air quality model evaluation data for organic. 2. C1-C14 carbonyls in Los Angeles air,” Environmental Science Technology, Vol. 30, No. 9, pp.2687-2703 (1996).
22. Grosjean, D., “Formaldehyde and other carbonyls in Los Angeles ambient air,” Environmental Science Technology, Vol. 16, No. 5, pp.254-262 (1982).
23. Grosjean, D., E. L. Wllllams Ⅱand E. Grosjean, “Atmospheric chemistry of isoprene and its carbonyl products,” Environmental Science Technology, Vol. 27, No. 5, pp. 830-840 (1993).
24. Grosjean, D., et al., “Atmospheric oxidation of biogenic hydrocarbons: reaction of ozone with β-pinene, D-limonene, trans-Caryophylene,” Environmental Science Technology, Vol. 27, pp.2754-2758 (1983).
25. Guenther A., et al., “A global model of natural volatile organic compound emission,” Journal of Geophysical Research, Vol. 100, pp. 8873-8892 (1995).
26. Haagen-Smit, A. J., “Chemistry and physiology of Los Ageles smog,” Indust. Eng. Chem., Vol. 44, pp. 1342-1346 (1952).
27. Kelly, N. A. and T. Y. Chang, “An experimental investigation of incremental reactivities of volatile organic compounds,” Atmospheric Environment, Vol. 33, pp. 2101-2110 (June 1999).
28. Kolahgar, B. (ed.), “On the budget of hydroxyl radicals at Schauinsland: role of biogenic volatile organic compounds,” Berichte des Forschungszentrums Julich; 3647 ISSN 0944-2952 (1999).
29. Llparl, F., and J. S. Stephen, “2,4-Dinitrophenylhydrazine-coated florisil sampling cartridges for the determination of formaldehyde in air,” Environmental Science Technology, Vol. 19, No. 1, pp.70-74 (1985).
30. Sauer, F. et al., “Formation of hydrogen peroxide in the ozonolysis of isoprene and simple alkene under humid conditions,” Atmospheric Environment, Vol. 33, No. 21, pp. 229-241 (1999).
31. Sharkey, T. D. and E. L. Singsaas, “Why plants emit isoprene,” Nature, Vol. 374, pp. 679 (1995).
32. Slemr, J., W. Junkermann and A. V. Thomas, “Temporal variations in formaldehyde, acetaldehyde and acetones and budget of formaldehyde at a rural sate in southern Germany,” Atmospheric Environment, Vol. 30, No. 21, pp. 3667-3676 (1996).
33. Tuazon, E. C. and R. Atkinson, “A product study of the gas-phase reaction of nethyl vinyl ketone with the OH radical in the presence of NOx,” International journal of chemical kinetics, Vol. 21, pp. 1141-1152 (1989).
34. Tuazon, E. C. and R. Atkinson, “A product study of the gas-phase reaction of methacrolein with the OH radical in the presence of NOx,” International journal of chemical kinetics, Vol. 22, pp. 591-602 (1990).
35. Paulson, S. E., R. C. Flagan, and J. H. Seinfeld, “Atmospheric photooxidation of isoprene part Ⅰ. The ozone-isoprene reaction.” International journal of chemical kinetics, Vol. 24, No. 1, pp.79-101 (1992).
36. Paulson, S. E., R. C. Flagan, and J. H. Seinfeld, “Atmospheric photooxidation of isoprene part Ⅱ. The ozone-isoprene reaction.” International journal of chemical kinetics, Vol. 24, No. 1, pp.103-125 (1992).
37. Paulson, S. E. et al., “Measurement of OH radical formation from the reaction of ozone with several biogenic alkenes,” Journal of Geophysical Research, Vol. 103, pp.533-539 (1988).
38. Platt, U. et al., “New tropospheric OH measurements,” Journal of Geophysical Research, Vol. 93, pp.5159-5166 (1988).
39. Weber, W. J. and F. A. DiGiano, “Process dynamics in environmental systems,” New York, NY 10158-0012.
40. Zweidinger, R. B., et al., “Detailed hydrocarbon and aldehyde mobile source emissions from roadway studies,” Environmental Science Technology, Vol. 22, No. 8, pp.956-962 (1988).
41. 吳文雄,〝台中市空氣樣品中的臭氧污染潛勢及探討原生性污染物-NOx及NMHC對臭氧污染潛勢的影響〞,國立中興大學環境工程研究所碩士論文(民國82年)。
42. 洪世皇〝大氣中揮發性有機物全幅組成成分特徵及穩定性分析〞,國立雲林科技大學環境與安全工程系碩士論文,頁1-254(民國88年)。
43. 沈信旭,〝大氣光化煙霧產量模式之應用研究〞,國立雲林科技大學環境與安全工程系碩士論文,頁1-231(民國88年)。
44. NIEA A723.71B,〝排放管道中總碳氫化合物及非甲烷總碳氫化合物含量自動檢測方法-線上火焰離子化偵測法〞,民國87年實施,行政院環保署,頁1-8 (民國87年)。
45. 蔡俊鴻,〝台灣地區臭氧濃度變化趨勢之研究〞,行政院環保署(1988)。
46. 駱尚廉,〝環境數學〞,茂昌圖書有限公司(1995)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top