跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/05 01:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭鈺雅
研究生(外文):PENG, YU-YA
論文名稱:酮基團液晶環氧樹脂/改質陶瓷填料複合材料之製備及其熱性質研究
論文名稱(外文):Preparation and Thermal Properties of Liquid Crystalline Epoxy Resin with Ketone Mesogen Composites Containing Functionalized Ceramic Fillers
指導教授:何宗漢何宗漢引用關係鄭錫勳鄭錫勳引用關係
指導教授(外文):HO, TSUNG-HANCHENG, SHI-SHIUN
口試委員:何宗漢鄭錫勳顏福杉林烈利
口試委員(外文):HO, TSUNG-HANCHENG, SHI-SHIUNYEN, FU-SHALIN, LIEH-LI
口試日期:2018-06-29
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:109
中文關鍵詞:液晶環氧樹脂酮基團陶瓷填料氧化鋁氮化鋁氮化硼複合材料
外文關鍵詞:liquid crystalline epoxy resinketone mesogenceramic fillerboron nitridealuminium oxidealuminium nitridecomposites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的為合成出含酮基團之液晶環氧樹脂 (LCE)當作基材,並添加改質前後之陶瓷填料製備出高導熱複合材料。首先,合成之LCE利用FTIR、1H-NMR、MS鑑定其結構,並利用DSC及POM分析LCE液晶相範圍及液晶型態。DSC結果顯示,液晶範圍出現在113oC~127oC之間,使用POM可以觀察到雙折射液晶相,與DSC曲線符合。陶瓷填料(氧化鋁、氮化鋁、氮化硼)利用矽烷偶合劑 (APTES)改質,以增加填料與基材的相容性,因為有較強的界面作用力因此提高了填料在基材中的分散性。利用FTIR鑑定改質陶瓷填料之結構,並將改質前後的陶瓷填料依照10~50%比例添加於LCE中,製備出高導熱複合材料。複合材料利用SEM觀察陶瓷填料在LCE中的分散情形,使用TGA及Hot-disk探討複合材料之熱性質,TGA結果顯示,複合材料之熱穩定性及焦炭殘餘率都隨著填料的增加而增加,Hot-disk結果顯示,陶瓷填料添加於LCE基材中明顯的提升了複合材料之導熱係數,由SEM觀察到改質之陶瓷填料在LCE中分散較均勻,填料彼此互相接觸而形成連續的導熱網絡,因此提高了複合材料的導熱係數。
Raw and modified Ceramic filler (Al2O3, AlN, BN) were respectively added to a liquid crystalline epoxy resin (LCE) to obtain a high thermal conductive composites. The liquid crystalline epoxy resin (LCE) with Ketone mesogen,1,5-bis(p-glycidyloxy-phenyl)-1,4-pentadiene-3-one, was synthesized and its chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H-NMR) and mass spectroscopy (MS). The liquid crystalline phase transition behaviors of LCE was characterized by differential scanning calorimetry (DSC) and polarizing optical microscope (POM). The DSC results showed that the liquid crystal mesophase range of LCE is at 113°C~127°C on heating process. The Birefringent liquid crystalline texture was observed during liquid crystal mesophase range by POM, the result was consistent with the DSC curve. The ceramic fillers(Al2O3, AlN, BN), modified by surface coupling agent 3-aminopropyltriethoxysilane (APTES). The grafting of silane molecules onto the surface of filler improved the compatibility and homogeneous dispersion of filler in the LCE matrix with a strong interface interaction. The surface modified fillers were characterized by FTIR. The thermal properties of LCE/fillers composites loading with different content of raw and modified fillers, ranging from 10 to 50 wt%, were characterized by thermal gravimetric analysis (TGA) and Hot-disk. The morphology of LCE/fillers composites were characterized by field emission scanning electron microscopy (SEM). TGA results showed that the thermal stability and char yield were increased by increasing the filler contents. Hot-disk results showed that incorporation of ceramic fillers in the LCE matrix significantly enhanced the thermal conductivity of the composites. The SEM observation show that modified fillers uniformly dispersed in LCE matrix, and fillers contacted with each other to form a continuous thermal conductive network, contributing to the enhancement of thermal conductivity of the composites.
摘要 i
Abstract ii
誌謝 iv
總目錄 v
Scheme vii
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 導熱複合材料之現況及發展 2
1-3 研究目的 4
第二章 文獻回顧 5
2-1 液晶簡介 5
2-1-1 液晶起源 6
2-1-2 液晶形成及分子結構 7
2-1-3 液晶分類 8
2-1-4 低分子液晶 10
2-1-5 高分子液晶 15
2-2 環氧樹脂 18
2-2-1 硬化環氧樹脂特性 19
2-3 液晶環氧樹脂 20
2-4 熱傳導理論 21
2-4-1 熱傳導率定義 21
2-4-2 影響熱傳導率因素 22
2-5 陶瓷填料 25
2-5-1 氧化鋁 26
2-5-2 氮化鋁 27
2-5-3 氮化硼 29
2-6 矽烷偶合劑 31
2-7 導熱複合材料 33
第三章 實驗 44
3-1 實驗流程圖 44
3-2 材料與藥品 45
3-3 實驗裝置圖 46
3-4 儀器設備 49
3-5 實驗步驟 50
3-5-1 p-glycidyloxybenzaldehyde (GLBA)之合成 50
3-5-2 Liquid crystalline epoxy resin (LCE)之合成 51
3-5-3陶瓷填料 (Al2O3, AlN, BN)表面改質之製備 53
3-5-4 LCE/filler (Al2O3, AlN, BN)複合材料之製備及熱硬化 55
3-6 結構鑑定與物性測試 58
第四章 結果與討論 60
4-1 LCE之合成鑑定 61
4-1-1 LCE之FTIR分析 61
4-1-2 LCE之1H-NMR分析 62
4-1-3 LCE之MS分析 63
4-2 LCE液晶形態之探討 64
4-2-1 DSC分析液晶相範圍 64
4-2-2 POM液晶相觀察 65
4-3 陶瓷填料 (Al2O3, AlN, BN)表面改質之鑑定 67
4-3-1 Si-Al2O3 之FTIR 67
4-3-2 Si-AlN 之FTIR 68
4-3-3 Si-BN 之FTIR 69
4-4 液晶環氧樹脂/陶瓷填料複合材料之表面形貌 70
4-5 液晶環氧樹脂/陶瓷填料複合材料之熱性質探討 75
4-5-1 液晶環氧樹脂/陶瓷填料複合材料之TGA分析 75
4-5-2 液晶環氧樹脂/陶瓷填料複合材料之Hot-disk分析 83
第五章 結論 89
第六章 參考文獻 90

1. N. Yang, C. Xu, J. Hou, Y. Yao, Q. Zhang, M. E. Grami, L. He, N. Wang, X. Qu, 2016, “Preparation and properties of thermally conductive polyimide/boron nitride composites”, RSC Adv., vol. 6, no. 1, p. 18279-18287.
2. 肖善雄,張藝,孫世彧,劉四委,池振國,許家瑞,2010,“導熱高分子複合材料的研究進展”,廣東化工,第37卷,第2期,頁5。
3. Y. Li, M. R. Kessler, 2014, “Creep-resistant behavior of self-reinforcing liquid crystalline epoxy resins,” Polymer, vol. 55, no. 8, p. 2021-2027.
4. 郭卿等,黃燕,張育英,張保龍,2010,“液晶環氧樹脂及一系列液晶固化促進劑的合成及其固化行為研究”,離子交換與吸附,第26卷,頁68-73。
5. 楊明山,2008,“側鏈液晶環氧樹脂的製備與表徵”,現代塑料加工應用,第20卷,第4期,頁53。
6. 高俊剛,陳靜,董建娜,劉國棟,“液晶環氧p-BPEPEB改性雙酚-F環氧樹脂的固化動力學”,塗料工業,第38卷,第5期。
7. M. Harada, N. Hamaura, M. Ochi, Y. Agari, 2013 “Thermal conductivity of liquid crystalline epoxy/BN filler composites having ordered network structure”, Compos. Part B Eng., vol. 55, p. 306-313.
8. 胡慧慧,李凡,李立群,2011,“環氧樹脂基導熱絕緣複合材料的研究進展”,絕緣材料,第44卷,第5期。
9. X. Huang, P. Jiang, T. Tanaka, 2011, “A Review of Dielectric Polymer Composites With High Thermal Conductivity”, IEEE, vol. 27, no. 4.
10. P.G. De Gennes and J. Prost, 1993 , “The physics of liquid crystals”, International series of monogerphs on physics.
11. V. Nazarenko, M.V. Kurik, G.V. Klimusheva, Z. Y. Gotra, V.M. Sorokin, L.M. Lisetski, 2018, “Liquid crystals in Ukraine and Ukrainians in liquid crystals”, J. Mol. Liq., p. 1-5.
12. D. Andrienko, 2018, “Introduction to liquid crystals”, J. Mol. Liq., p.22.
13. 姚永鑫,2006,側鏈取代液晶基之高分子液晶材料在偏極化電激發光元件的應用,國立交通大學應用化學研究所,博士論文。
14. 張競文,2010,溫度及摩擦對聚亞醯胺薄膜表面能及對液晶濕潤性之影響,國立中山大學光電工程學系,碩士論文。
15. F. Xu, Y. Xin, T. Li, 2018, “Friction-induced lubricating nanocoatings of main-chain thermotropic liquid crystalline polymer”, Polymer (Guildf)., vol. 140, p. 269-277.
16. 2015,高分子液晶概述,艾特貿易網。
17. 林益生,2013,含酮介晶液晶環氧樹脂之合成、鑑定及熱性質研究,國立高雄應用科技大學化材系,碩士論文。
18. 毛建國,1997,高分子液晶,現代化工,第二期。
19. 黃志鏜,2005,塑膠物語:環氧樹脂,塑膠e學院。
20. 王德中,2001,環氧樹脂生產與應用,化學工業出版社。
21. 吳秋昌,傅馨慧,李文昭,2010,“生質材料應用於環氧樹脂製造” vol. 17, no. 6, p. 78-82.
22. S. Liu, V. S. Chevali, Z. Xu, D. Hui, H. Wang, 2018, “A review of extending performance of epoxy resins using carbon nanomaterials”, Compos. Part B, vol. 136, p. 197-214.
23. 垣內弘,賴耿陽譯,1993,環氧樹脂應用實務,復漢出版社。
24. C. Lou, X. Liu, 2018, “Functional dendritic curing agent for epoxy resin : Processing , mechanical performance and curing/toughening mechanism,” Compos. Part B, vol. 136, p. 20-27.
25. C. Carfagna, E. Amendola, M. Giamberini, 1994, “Rigid rod networks : Liquid crystalline epoxy resins” , Composite Structures, vol. 27, p. 37-43.
26. D. Ribera, A. Mantecón, A. Serra, 2001, “Synthesis and Crosslinking of a Series of Dimeric Liquid Crystalline Epoxy Resins Containing Imine Mesogens”, Macromol. Chem. Phys., no. 202, p. 1658-1671.
27. H. Galina, 2007, “Liquid-Crystalline Epoxy Resins”, Wiley InterSclence, vol. 105, p. 224-228.
28. N. Burger, N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, 2016, “Progress in Polymer Science Review of thermal conductivity in composites : Mechanisms , parameters and theory” , Prog. Polym. Sci., vol. 61, p. 1-28.
29. H. Chen, V. V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chena 2016, “Progress in Polymer Science Thermal conductivity of polymer-based composites : Fundamentals and applications,” Prog. Polym. Sci., vol. 59, p. 41-85.
30. Z. Han, A. Fina, 2011, “Thermal conductivity of carbon nanotubes and their polymer nanocomposites : A review”, Prog. Polym. Sci., vol. 36, no. 7, p. 914-944.
31. H. Cho, T. Nakayama, H. Suematsu, T. Suzuki, W. Jiang, K. Niihara, E. Song, N. S. A. Eom, S. Kim, Y. H. Choa, 2016, “Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets”, Compos. Sci. Technol., vol. 129, p. 205-213.
32. 李守仁,白立文,“散熱對策關鍵材料”,材料世界網。
33. N. lchinose,陳皇鈞、劉坤靈譯,1989,精密陶瓷導論,曉園出版社。
34. L. M. Mcgrath, R. S. Parnas, S.H. King, J. L. Schroeder, D. A. Fischer, J. L. Lenhart, 2008, “Investigation of the thermal, mechanical, and fracture properties of alumina epoxy composites”, Polymer, vol. 49, p. 999-1014.
35. G. Lazouziet, M. M. Vuksanović, N. Z. Tomić, M. Mitrić, M. Petrović, V. Radojević, R. J. Heinemann, 2018, “Optimized preparation of alumina based fillers for tuning composite properties”, Ceramics International, vol. 44, p. 7442-7449.
36. 蔡欣潔,2009,環氧微/奈米複合材料之製備及其物性研究,國立高雄應用科技大學化材系,碩士論文。
37. F. Salazar, 2015, “Introduction to Nanostructured Materials”, Advanced NanoFabric Engineering.
38. S. He, J. Hu, C. Zhang, J. Wang, L. Chen, X. Bian, J. Lin, X. Du, 2018, “Performance improvement in nano-alumina filled silicone rubber composites by using vinyl tri-methoxysilane”, Polym. Test., vol. 67, no. February, p. 295-301.
39. K. Nam, K. Hong, H. Park, H. Choe, 2018, “Facile synthesis of powder-based processing of porous aluminum nitride”, J. Eur. Ceram. Soc., vol. 38, no. 4, p. 1164-1169.
40. Z. Vashaei, T. Aikawa, M. Ohtsuka, H. Kobatake, H. Fukuyama, S. Ikeda, K. Takada, 2009, “Influence of sputtering parameters on the crystallinity and crystal orientation of AlN layers deposited by RF sputtering using the AlN target”, vol. 311, p. 459-462.
41. 江榮隆,黃安立,2008,“Structure and Sensing Properties on a Thin AlN Film”,科學與工程技術期刊,第四卷,第一期,p. 73-79.
42. J. T. S. Eng, P. K. Samanta, 2017, “Review on Wet Chemical Growth and Anti-bacterial Activity of Zinc Oxide”, Tissue Science & Engineering, vol. 8, no. 1, p. 8-11.
43. H. Xia , X. Zhang, Z. Shi, C. Zhao, Y. Li, J. Wang, G. Qiao, 2015 “Mechanical and thermal properties of reduced graphene oxide rein- forced aluminum nitride ceramic composites,” Mater. Sci. Eng. A, vol. 639, p. 29-36.
44. 汪建民,陶瓷技術手冊(下),中華民國粉末冶金協會編審委員會出版。
45. C. Yu , J. Zhang, Z. Li, W.Tiana, L. Wang, J. Luo, Q. Li, X. Fan, Y. Ya, 2017, “Enhanced through-plane thermal conductivity of boron nitride/epoxy composites”, Compos. Part A, vol. 98, p. 25-31.
46. N. Kostoglou, K. Polychronopoulou, C.Rebholz, 2015, “Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets”, Vaccum, vol. 112, p. 42-45.
47. M. Koperski, K. Nogajewski, M. Potemski, 2018, “Single photon emitters in boron nitride : More than a supplementary material”, Opt. Commun., vol. 411, p. 158-165.
48. M. H. N. Hamaura, M. Ochi, Y. Agari, 2017, “Thermal conductivity of liquid crystalline epoxy/BN filler composites having ordered network structure”, Compos. Part B Eng., vol. 55, p. 306-313.
49. M. W. Akhtar, Y. S. Lee, D. J. Yoo, J. S. Kim, 2017, “Alumina-graphene hybrid filled epoxy composit: Quantitative validation and enhanced thermal conductivity”, Compos. Part B, vol. 131, p. 184-195.
50. P. G. Pape, 2017, “Adhesion of carbon steel and natural rubber by functionalized silane coupling agents”, International Journal of Adhesion & Adhesives, p.70-74.
51. S. C. Agents, “Silane Coupling Agents Combination of Organic and Inorganic Materials”, Shin-Etsu Chemical Co. Ltd..
52. N. Bonfoh, A. Jeancolas, F. Dinzart, H. Sabar, M. Mihaluta, 2018, “Effective thermal conductivity of composite ellipsoid assemblages with weakly conducting interfaces”, Composite Structure.
53. K. Kim, J. Kim, 2014, “Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method”, Ceram. Int., vol. 40, no. 4, p. 5181-5189.
54. D. Lee, S. Lee, S. Byun, K. W. Paik, S. H. Song, 2018, “Novel dielectric BN/epoxy nanocomposites with enhanced heat dissipation performance for electronic packaging”, Compos. Part A, vol. 107, no. November 2017, p. 217-223.
55. L. Ren, Q. Li, J. Lu, X. Zeng, R. Sun, J. Wu, J. B. Xud, C. P. Wong, 2018, “Enhanced thermal conductivity for Ag-deposited alumina sphere / epoxy resin composites through manipulating interfacial thermal resistance”, Compos. Part A, vol. 107, no. January, p. 561-569.
56. J. Hou, G. Li, N. Yang, L. Qin, M. E. Grami, Q. Zhang, N. Wang and X. Qu, 2014, “Preparation and Characterization of Surface Modified Boron Nitride Epoxy Composites with Enhanced Thermal Conductivity”, RSC Adv., vol. 4, p. 44282-44290.
57. T. L. Li, S. L.C. Hsu, 2010, “Enhanced thermal conductivity of polyimide films via a hybrid of micro-and nano-sized boron nitride”, J. Phys. Chem. B., vol. 114, no. 20, p. 6825-6829.
58. Y. Yao, X. Zeng, K. Guo, R. Sun, J. B. Xu, 2015, “Composites : Part A The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites,” Compos. PART A, vol. 69, p. 49-55.
59. V. A. Online, C. Wu, R. Qian, L. Xie, K. Yang, P. Jiang, 2014, “Nano-micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength”, RSC Adv., p. 21010-21017.
60. N. Yang, C. Xu, J. Hou, Y. Yao, Q. Zhang, M. E. Grami, L. He, N. Wang, X. Qu, 2016, “Preparation and properties of thermally conductive polyimide/boron nitride composites”, RSC Adv., vol. 6, no. 1, p. 18279-18287.
61. Y. Wang, X. Qiao, J. Wan, Y. Xiao, X. Fan, 2016, “Preparation of AlN microspheres/UHMWPE”, RSC Adv., vol. 6, p. 80262-80267.
62. K. Wu, C. Lei, W. Yang, S. Chai, F. Chen, Q. Fu, 2016, “Surface modification of boron nitride by reduced graphene oxide for preparation of dielectric material with enhanced dielectric constant and well-suppressed dielectric loss”, Compos. Sci. Technol., vol. 134, p. 191-200.
63. 劉旭唐,2015,酮基團液晶環氧樹脂之合成及其奈米碳管複合材料之熱性質研究,國立高雄應用科技大學化材系,碩士論文。
64. J. Hou, G. Li, N. Yang, L. Qin, M.E. Grami, Q. Zhang, N. Wang, X. Qu, 2014, “Preparation and characterization of surface modified boron nitride epoxy composites with enchanced thermal conductivity”, RSC Adv., vol. 4, p. 44282.
65. 邱昱維,2005,α-Al2O3粉末披覆γ-氨丙基三乙氧基矽烷耦合劑之研究,國立成功大學資源工程系,碩士論文。
66. G. Zeng, S. Lu, L. Song, X. Xiao, J. Gao, L. Pan, Z. He, J. Yu, 2015, “Enhanced thermal properties in a hybrid graphene-alumina filler for epoxy composites”, RSC Adv., vol. 5, p.35773.
67. Z, Yu, H. Di, Y. Ma, L. Lv, Y. Pan, C. Zhang, Y. He, 2015, “Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings”, Appl. Surf. Sci., vol. 351, p. 986-996.
68. Y. S. Lin, S. L. C. Hsu, T. H. Ho, S. S. Cheng, Y. H. Hsiao, 2017, “Synthesis, characterization, and thermomechanical properties of liquid crystalline epoxy resin containing ketone mesogen,” Polymer Engineering and Science, vol. 57, p. 424-431.
69. G. Mittal, K. Y. Rhee, S. J .Park, 2016, “Processing and Characterization of PMMA/PI Composites Reinforced With Surface Functionalized Hexagonal Boron Nitride,” Appl. Surf. Sci.,
70. L. Fang, C. Wu, R. Qian, L. Xie, K. Yang, P. Jiang, 2014, “Nano–micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength”, vol. 4, p. 21010-21017.
71. T. Qi, Y. Li, Y. Cheng, F. Xiao, 2014, “Surface treatments of hexagonal boron nitride for thermal conductive epoxy composites”, IEEE, p. 405-408.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊