跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/10 14:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭伊珊
研究生(外文):Yi-Shan Jeng
論文名稱:應用田口損失函數於易腐性商品之兩階段訂價
論文名稱(外文):Using the Taguchi Loss Function for Perishable Commodities Two-Stage Pricing
指導教授:古東源古東源引用關係
指導教授(外文):Tong-yuan Koo
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:工業工程與管理研究所碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:50
中文關鍵詞:兩階段訂價損失函數易腐性商品
外文關鍵詞:Perishable commoditiesLoss functionTwo-stage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
訂價問題長久以來一直是市場行銷重要的一環,人們對於產品的需求也從多量少樣演變成多樣少量,也由於市場的競爭,公司管理者必須要更快速、更準確的做出價格回應之決策。且由於當今的社會環境,企業管理者不只要思考如何達到利潤最大化,更要了解產品是否會對顧客造成損失。也因為上述所提,本研究將利用田口損失函數之特質─產品品質即該產品售出後對社會的最小損失,藉此將顧客購買之損失成本考慮進去。
本研究主要是針對易腐性商品進行探討,由於易腐性商品具備銷售時間短、新鮮程度隨銷售時間演進而降低,這將會降低購買慾望,因此管理者必須於折扣期間盡快將產品售出,以確保將利潤虧損減至最低,並避免出售腐壞產品給消費者,造成消費者與社會之負擔。本研究建立一個加入品質損失成本之訂價模式,並選擇望小型損失函數,透過程式運算後,求得在已知折扣時間及折扣率下,零售商之最適期初訂價。
Pricing problem has been an important part of marketing. People’s demands for products also become variety of small. Because of the market competition, corporate managers must make the price decision faster and accurate. And because of the current social environment, the managers must not only think about how to maximize profits, but also understand whether the product will cause customers’ losses. Because of the above mentioned, this study will use the Taguchi loss function to consider the customer’s loss costs, and to find the best price.
This study aimed to explore the perishable commodities. Due to sale of perishable goods have the characteristics of a short time, and the freshness will evolve with time and reduced sales, which will reduce the customer’s desire to buy. Therefore managers also must use two-stage pricing model to ensure minimum loss of profits during the period as soon as possible. So that it can avoid selling overdue products to consumers, and can’t result in the burden of consumers and society.
In this study, we adding a quality loss cost to the pricing model, and select the smaller-the-better loss function. Then through the programming calculation. Giving that the discount time and rate,to find the retailer’s optimal pricing.
摘要 I
ABSTRACT II
致謝 III
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究架構 2
第二章 文獻探討 4
2.1 階段性訂價 4
2.1.1 最適訂價之類似問題 4
2.1.2 單階段最適訂價 5
2.1.3兩階段最適訂價 6
2.2損失函數(LOSS FUNCTION) 8
2.2.1 損失函數的由來與概念 8
2.2.2 品質損失 10
2.2.3 望目型損失函數 11
2.2.4 望小型損失函數 13
2.2.5 望大型損失函數 14
2.3 訂價策略 15
2.3.1有限價格組合(Finite set of prices) 16
2.3.2漲價、降價、與促銷訂價(Markups, Markdowns, and Promotions) 16
2.3.3聯合訂價限制式(Joint Price Constraints) 17
2.4小結 19
三、研究方法 20
3.1前言 20
3.2 研究假設 21
3.3 符號定義說明 22
3.4 加入損失函數之兩階段最佳訂價模式 23
四、數值分析 30
4.1參數設定 30
4.2分析結果 30
五、結論及未來研究建議 35
5.1結論 35
5.2未來研究建議 35
參考文獻 37
[1] 吳復強,2005,產品穩健設計田口方法之原理與應用,全威圖書有限公司,
台北。
[2] 呂誌倫,2008,考量生產者與採購者雙方最大利潤之最佳化模式,南台科技
大學,碩士論文。
[3] 李婉瑜, 2005,不同損失函數在制定經濟工程規格上之比較研究,成功大
學,碩士論文。
[4] 邵奕珮,2007,季節性商品之最佳定價及其近似解,中央大學,碩士論文。
[5] 柯珮崎,2005,以近似法求解季節性商品之最佳定價,中央大學,碩士論文。
[6] 陳懿璿,2001,易腐性商品之兩階段式最佳訂價訂購聯合決策存貨系統。中
央大學,碩士論文。
[7] 楊家昕,2004,易腐性商品兩階段最佳訂價策略,台灣科技大學,碩士論文。
[8] 蘇建全,2006,以啟發式演算法求解季節性商品之最佳定價。中央大學,碩
士論文。
[9] 鐘清章,1993, 田口式品質工程導論,中華民國品質管制學會。
[10] Bitran, G. and R. Caldentey, 2002, “An Overview of Pricing Models for Revenue Management”, Manufacturing and Service Operations Management, vol. 5, pp.203-229.
[11] Bitran, G., R. Caldentey, and S. Mondschein , 1998, “Coordinating Clearance Markdown Sales of Seasonal Products in Retail Chains”, Management Science, vol. 46, pp.609-624.
[12] Bitran, G.R. and S.V. Mondschein , 1997, “Periodic Pricing of Seasonal Products in Retailing”, Management Science, vol. 43, pp.64-79.
[13] Brynjolfsson, E. and M.D. Smith , 2000, “Frictionless Commerce ? A Comparison of Internet and Conventional Retailers”, Management Science, vol. 46, pp.563-585.
[14] C.X. Wang and S. Webster , 2009,“ Markdown money contracts for perishable goods with clearance pricing”, European Journal of Operational Research, vol. 196,pp.1113-1122
[15] Chatwin R.E. , 2000, “Optimal Dynamic Pricing of Perishable Products with Stochastic Demand and A Finite Set of Prices”, European Journal of Operational research, vol.125,pp.149-174.
[16] Feng Y. and B. Xiao , 2000, “A Continuous-Time Yield Management Model with Multiple Prices and Reversible Price Changes”, Management Science, vol. 46, pp.644-657.
[17] Feng, Y. and G. Gallego, 1995,“Optimal Starting Times for End-of-Season Sales and Optimal Stopping Times for Promotional Fares”, Management Science ,vol. 41,pp.371-1391.
[18] Feng, Y. and G. Gallego, 1996, “Perishable Asset Revenue Management with Markovian Time Dependent Demand Intensities”, Management Science, vol.46, pp.941-956.
[19] Feng, Y.and B. Xiao , 2000, “Optimal Policies of Yield Management with Multiple Predetermined Prices”, Management Science, vol. 48, pp.332-343.
[20] Gallego, G. and G.J. van Ryzin, 1994, “Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons”, Management Science, vol.40, pp.999-1020.
[21] Kalyanam, K. , 1996, “Pricing Decisions Under Demand Uncertainty :A Bayesian Mixture Model Approach”, Management Science,vol.15, pp.207-221.
[22] Mantrala, M.K. and S. Rao,2001, “A Decision-Support System that Helps Retailers Decide Order Quantities and Markdowns for Fashion Goods”, Interfaces, vol. 31, pp.146-165.
[23] Plunkett, J. and Dale, B.G., 1988, “Quality cost: a critique of some economic cost of quality models”, International Journal of Productions Research,
Research, vol.31, pp.44-56
[24] Peter Diamond,1971, “A Model of Price Adjustment”, Journal of Economic Theory, vol. 3, pp.156-168.
[25] Smith, S. A., D.D. Achabal, S.H.McIntyre, 1994,“ A Two Stage Sales Forecasting Procedure Using Discounted Least Squares”, Journal of Marketing,
vol. 26, pp.1713-1726.
[26] Y.H. Chun, 2003, “Optimal pricing and ordering policies for perishable commodities”, European Journal of Operational Research, vol.144, pp.68-82.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊