ACI Committee 213. (1999). Guide for Structural Lightweight Aggregate Concrete. (Reapproved,1999).
ASTM International. (Founded 1898). ASTM Standards
Bumanis, G., Bajare, D., Locs, J., &; Korjakins, A. (2013). Alkali-silica reactivity of foam glass granules in structure of lightweight concrete. Construction and Building Materials, 47(0), 274-281.
Cheeseman, C. R., &; Virdi, G. S. (2005). Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources, Conservation and Recycling, 45(1), 18-30.
Chen, H.-J., Yang, M.-D., Tang, C.-W., &; Wang, S.-Y. (2012). Producing synthetic lightweight aggregates from reservoir sediments. Construction and Building Materials, 28(1), 387-394.
Chinese National Standards (CNS). (Founded 1935).
Ducman, V., &; Mirti&;#269;, B. (2009). The applicability of different waste materials for the production of lightweight aggregates. Waste Management, 29(8), 2361-2368.
Ducman, V., Mladenovi&;#269;, A., &; &;#352;uput, J. S. (2002). Lightweight aggregate based on waste glass and its alkali–silica reactivity. Cement and Concrete Research, 32(2), 223-226.
Elsharief, A. , Cohen, M. D ., &; Olek, J. (2005). Influence of lightweight aggregate on the microstructure and durability of mortar. Cement and Concrete Research, 35(7), 1368-1376.
Fan, C. S., Huang, C. Y., &; Li, K. C. (2014). Bloating mechanism of the mixture of thin-film transistor liquid-crystal display waste glass and basic oxygen furnace slag. Construction and Building Materials, 66(0), 664-670.
Fernandes, H. R., Tulyaganov, D. U., &; Ferreira, J. M. F. (2009). Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents. Ceramics International, 35(1), 229-235.
Gillott, J. E., Duncan, M. G., &; Swenson, E. G. (1973). Alkali-aggregate reaction in Nova Scotia
Huang, C.-H., &; Wang, S.-Y. (2013). Application of water treatment sludge in the manufacturing of lightweight aggregate. Construction and Building Materials, 43(0), 174-183.
Huang, S. C., Chang, F.-C., Lo, S.-L., Lee, M.-Y., Wang, C.-F., &; Lin, J.-D. (2007). Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of Hazardous Materials, 144(1–2), 52-58.
Ichikawa, T. (2009). Alkali–silica reaction, pessimum effects and pozzolanic effect. Cement and Concrete Research, 39(8), 716-726. Ichikawa, T., &; Miura, M. (2007). Modified model of alkali-silica reaction. Cement and Concrete Research, 37(9), 1291-1297.
Irabien, A., Viguri, J. R., &; Ortiz, I. (1990). Thermal dehydration of calcium hydroxide.
1. Kinetic model and parameters. Industrial &; engineering chemistry research,
29(8), 1599-1606.
Kourti, I., &; Cheeseman, C. R. (2010). Properties and microstructure of lightweight aggregate produced from lignite coal fly ash and recycled glass. Resources, Conservation and Recycling, 54(11), 769-775.
Ludmila, D. M. (1983). Handbook of concrete aggregate. (Noyes Publications).
Neville, A. M. (1995). Properties of concrete.
Nippon Slage Association. (2013). Production and uses of Blast Furnace Slag in Japan.
Riley, C. M. (1951). Relation of Chemical Properties to the Bloating of Clays. Journal of the American Ceramic Society, 34(4), 121-128.
Santos, R. M., Ling, D., Sarvaramini, A., Guo, M., Elsen, J., Larachi, F., . . . Van Gerven, T. (2012). Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment. Chemical Engineering Journal, 203(0), 239-250.
Shi Caijun. (2004). Steel Slag—Its Production, Processing, Characteristics, and Cementitious Properties. Journal of Materials in Civil Engineering, 16(3), 230-236.
Wang, X. R., Jin, Y. Y., Wang, Z. Y., Nie, Y. F., Huang, Q. F., &; Wang, Q. (2009). Development of lightweight aggregate from dry sewage sludge and coal ash. Waste Management, 29(4), 1330-1335.
Young, S. M. a. J. F. (1981). Concrete. Prentice-Hall,Int.
Zhang, M. H., &; Gjorv, O. E. (1990a). Microstructure of the interfacial zone between lightweight aggregate and cement paste. Cement and Concrete Research, 20(4), 610-618.
Zhang, M. H., &; Gjorv, O. E. (1990b). Pozzolanic reactivity of lightweight aggregates. Cement and Concrete Research, 20(6), 884-890.
中聯資源公司,2010企業社會責任報告書,2010
中聯資源網站資料. http://www.chc.com.tw/product2.html.
工業技術研究院-產業經濟與趨勢研究中心(IEK),IEK產業情報網
王金鐘、李德河,轉爐石作為道路基底層及工程土方材料再生利用之力學特性研究,中國土木水利工程學刊(Vol.17),2005王順元、陳豪吉,廢棄物資源化再製輕質骨材之應用研究,國立中興大學土木工程學系博士論文,2009王櫻茂、陳豪吉,台灣地區輕質骨材物理、化學及力學性資料之建立,財團法人台灣營建研究中心,1994
行政院環境保護署,101年度全國事業廢棄物申報統計,2014.05 更新
行業廢棄物管理技術資料,事業廢棄物行業製程參考手冊-鋼鐵冶煉業(89.12版),2000
吳庭安、朱智鴻、溫紹炳、申永輝,回收玻璃粉摻配廢棄物蚵殼製備發泡玻璃研究,&;#37979;冶:中國&;#37979;冶工程學會會刊(211)第73-78頁,2010
林東宏、李公哲,TFT-LCD廢玻璃混合轉爐石爐渣熱處理資材化製成絕緣玻璃陶瓷之研究,臺灣大學環境工程所碩士論文,2010高瑛紜、劉蘭萍,液晶面板製造業廢棄物資源化現況評析,綠基會通訊,2008
張添晉、王愫懃,廢玻璃與廢燈管資源回收循環,2010
許皓翔、林凱隆、鄭大偉,TFT-LCD廢玻璃以鹼激發方式製成防火材料之研究,國立宜蘭大學碩士論文,2012黃兆龍,混凝土性質與行為,詹氏書局(初版一刷),1997
黃英傑,TFT-LCD產業廢玻璃資源化介紹,永續產業發展雙月刊(第16期),2004黃智揚、李公哲,TFT-LCD廢玻璃混合轉爐石資材化燒製輕質骨材之發泡機制研究,臺灣大學環境工程所碩士論文,2013黃隆昇、林登峰、林平全、許伯良,評估煉鋼爐實應用於瀝青混凝土之性質及現場鋪設成效,中工高雄會刊(vol.2),2010
楊智麟,煉鋼爐渣於瀝青混凝土之應用,中聯資源公司,2009
詹詠翔,養生條件對轉爐石溶出行為之影響,國立成功大學碩士論文,2009劉國忠,煉鋼爐渣的資源化技術與未來推展方向,環保月刊(第一卷),2001蕭博仰,水庫淤泥輕質骨材之膨脹氣體生成研析,國立中興大學土木工程學系碩士論文,2006