跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/12 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張軒瑜
研究生(外文):Hsuan-Yu Chang
論文名稱:具數位校正技術的低功耗快閃式類比數位轉換器之設計
論文名稱(外文):Design of Low-Power Flash Analog-to-Digital Converters Using Digital Calibration
指導教授:楊清淵楊清淵引用關係
指導教授(外文):Ching-Yuan Yang
口試委員:劉深淵李泰成陳巍仁張順志林維亮
口試委員(外文):Shen-Iuan LiuTai-Cheng LeeWei-Zen ChenSoon-Jyh ChangWei-Liang Lin
口試日期:2016-01-19
學位類別:博士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:123
中文關鍵詞:快閃式類比數位轉換器數位校正低功耗
外文關鍵詞:FlashAnalog-to-Digital ConverterDigital CalibrationLow Power
相關次數:
  • 被引用被引用:0
  • 點閱點閱:437
  • 評分評分:
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:0
快閃式類比數位轉換器具有先天上的優勢能夠去達到高速的取樣速率。儘管快閃式類比數位轉換器有優越的取樣速率,但本身較大的功耗也成為它在許多應用上的瓶頸。在高速互補式金氧半導體類比數位轉換器的設計中,速度、功耗、精準性都是需要相互取捨考量的重要因素。隨著製程技術朝著更小的電晶體尺寸及較低的工作電壓之趨勢,快閃式類比數位轉換器也因此可以大幅降低其功耗。當互補式金氧半導體技術無止盡地趨向更小的電晶體尺寸發展時,也導致現今的深次微米電晶體必須伴隨著更低的工作電壓。然而當電晶體尺寸和工作電壓越來越縮減,卻使得快閃式類比數位轉換器產生顯著的電壓偏移,也讓它在較高的精準度設計上更加困難。目前有許多電路技術被使用來改善上述所遭遇的設計問題,像是電阻網路平均校正技術和數位校正技術,而其中的數位校正技術更是現今最主要的解決方案。在本篇論文中將提出一種新穎的數位校正技術去實現高速的類比數位轉換器。
本論文提出一個每秒轉換20億次,具有6位元解析度的快閃式類比數位轉換器,其採用樹狀佈局及數位校正技術且不具備取樣保持電路。由於在高速類比數位轉換器的前端電路設計通常會使用較小的元件尺寸,這也使得電壓偏移量增大,進而導致非線性的輸出電壓。因此一種數位校正方法將被應用去提升所提出的類比數位轉換器之效能。此外,我們藉由樹狀佈局來避免不使用取樣保持電路時可能產生的動態錯誤。實作出之類比數位轉換器在每秒轉換20億次的速度下,對於一個低頻的輸入訊號和一個有效解析度頻寬頻率的輸入訊號,其雜訊失真比分別可達到35.6dB及32.7dB。在每秒轉換20億次的速度下且操作電壓為1.2V時,該轉換器之消耗功率為28mW,其有效面積為0.56mm×0.62mm且效能指標為每階次消耗0.54微微焦耳。
另外,在本篇論文中還提出一個使用內插式平均電壓校正技巧去提升線性度和降低功耗之6位元解析度的快閃式類比數位轉換器。此轉換器利用逐次逼近演算法和最小化殘值演算法來決定校正精準度。其製程使用90奈米互補式金氧半導體製程,在每秒轉換20億次的速度下,對於一個低頻的輸入訊號和一個Nyquis頻率的輸入訊號,其雜訊失真比分別可達到36dB及33.5dB。校正後的INL與DNL峰值分別為0.36 LSB和 0.24 LSB。在每秒轉換20億次的速度下且操作電壓為1.2V時,該轉換器之消耗功率為25mW,其有效面積為0.32mm×0.62mm且效能指標為每階次消耗0.34微微焦耳。
最後,我們將兩顆晶片的設計考量與改善之處去做比較。由於沒有取樣保持電路,所以第一顆晶片僅適用於單一類比數位轉換器系統中的應用。而第二顆晶片則可以應用在多個類比數位轉換器的系統,像是時間交錯式超高速類比數位轉換器。因為第二顆晶片有較寬的校正範圍,所以比起第一顆晶片有較小的功率消耗。憑藉著較寬的校正範圍,快閃式類比數位轉換器的比較器電晶體尺寸就可以設計得更小,也因此能得到更少的動態功耗。效能總結與比較結果表格會整理在最後。


Flash-type ADCs have the inherent advantage on high-speed sampling rates. Although the flash ADC is superiority in sampling rate but its large power consumption makes itself bottleneck in many applications. Speed, power and accuracy are tradeoff in high-speed CMOS ADC design. Process technology scaling trends toward smaller transistor dimensions and low supply voltage, and thereby it leads to greatly reduce power consumption in flash ADCs. The never-ending story of CMOS technology trending toward smaller transistor dimensions has resulted to date in deep submicron transistors with lower supply voltages. Transistor size scaling results in significant offset voltage and supply voltage scaling makes it more difficult in higher accuracy design. In order to improving above design issues, many techniques have been proposed, such as resistor-averaging networks and digital calibrated techniques. Especially, the digital calibrated techniques are main solutions recently. In this thesis, the new idea of digital calibrated technique is proposed to realize high-speed ADCs.
First chip, using tree-type metal layout and digital calibration, a 6-bit 2-GS/s flash ADC without track-and-hold is presented. Since large offset voltages caused by using small device sizes in front-end of high-speed ADCs usually result in nonlinearity in output, a digitally calibrated method is applied to improve the performance of the proposed ADC. In addition, no track-and-hold circuit used will cause dynamic error but tree-type metal layout will avoid it. Measurement results show the ADC achieves a SNDR of 35.6 dB for a low frequency input at 2 GS/s sampling frequency, and 32.7 dB for an ERBW input frequency. The power consumption is 28 mW at 2 GS/s from a 1.2-V supply. The core area is 0.56mm × 0.62mm and the figure of merit is 0.54pJ/conv.
Second chip, a 6-bit flash ADC using reference-voltage- interpolated calibration to improve linearity and reduce power dissipation is presented. In the ADC, the digital calibration logic employs successive approximation algorithm and minimized residue algorithm to determine precise calibration levels. Implemented by 90-nm CMOS process, the proposed ADC can achieve a signal-to-noise-and-distortion ratio of 36 dB for a low input frequency and 33.5 dB for a Nyquist-rate input frequency at 2-GS/s sampling rate. The peaks of integral and differential nonlinearities after calibration are 0.36 LSB and 0.42 LSB, respectively. The power consumption is 25 mW at 2-GS/s from a 1.2-V supply. The core area is 0.32 mm × 0.62 mm, and the figure of merit is 0.34 pJ/conversion step.
Finally, we compare the two chips design considerations and improvements. The first chip is suitable only in single ADC system application due to no track-and-hold circuit. The second chip is suitable in multi-sub ADCs system application, such as time-interleaved ultra-high speed ADCs. The second chip consumes less power comparing to the first chip due to wider calibration range. Transistor size of the comparator in flash ADC can be designed smaller due to wide calibration range, and it consumes less dynamic power. Performance summary and comparison table will be shown finally.


誌謝 i
摘要 ii
Abstract iv
Table of Contents vi
List of Tables ix
List of Figures x

Chapter 1 Introduction - 1 -
1.1. High-Speed ADC Applications and Techniques - 1 -
1.2. Organization - 3 -

Chapter 2 Flash Analog-to-Digital Converters - 4 -
2.1. Flash ADC Basic Architecture and Characteristic - 4 -
2.2. Speed-Power-Accuracy Tradeoff in High-Speed ADCs - 10 -
2.3. Flash ADC Development Technology Recent Years - 17 -
2.3.1. Part A To Part E of Flash ADC Development - 18 -
2.3.2. Part F To Part H of Flash ADC Development - 22 -
2.3.3. Part I To Part K of Flash ADC Development - 29 -
2.3.4. Part L To Part O of Flash ADC Development - 41 -

Chapter 3 Design Considerations of Calibrated Flash ADC without Track-and-Hold - 55 -
3.1. Delay of Interconnections for VLSI Circuits - 56 -
3.1.1. Interconnection RC Effect - 56 -
3.1.2. Distributed RC Line - 57 -
3.2. Background of the Flash ADC - 60 -
3.2.1. Offset Considerations - 60 -
3.2.2. Validation of Dynamic Offset Without T&H - 62 -
3.2.3. Symmetric Interconnections - 66 -
3.3. Prototype Flah ADC - 69 -
3.3.1. ADC Architecture - 69 -
3.3.2. Realization and Measurement for the ADC - 72 -
3.3.3. Summary - 76 -

Chapter 4 A Reference Voltage Interpolation Based Calibration Method for Flash ADCs - 77 -
4.1. Calibration Background - 77 -
4.1.1. Offset in Input Stage - 78 -
4.1.2. Calibration Example - 80 -
4.2. Proposed Interpolated Calibration Technique - 81 -
4.2.1. Concept of Interpolation Technique for Calibration - 82 -
4.2.2. Simplified Calibration Architecture - 85 -
4.2.3. Practical Effect of Interpolation Reference Calibration - 86 -
4.2.4. Nonidealities of Reference Interpolation - 89 -
4.3. Digital Calibration Algorithm - 89 -
4.3.1. Digital Calibration Architecture - 89 -
4.3.2. Prototyping Successive Approximation Algorithm - 94 -
4.3.3. Excepted-Value Determination to Modify SAA - 96 -
4.3.4. Input Level Shifter - 97 -
4.3.5. Minimized Residue Algorithm - 98 -
4.4. Realization and Measurement for the ADC - 100 -
4.4.1. System Realization - 100 -
4.4.2. Measurement Results - 102 -

Chapter 5 Performance Comparison - 111 -

Chapter 6 Conclusions - 116 -
6.1. Conclusions - 116 -
6.2. Future Works - 116 -

Reference - 118 -


[1]D. A. Sobel and R. W. Brodersen, “A 1 Gb/s mixed-signal baseband analog front-end for a 60 GHz wireless receiver,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1281–1289, Apr. 2009.
[2]P. R. Kinget, “Device mismatch and tradeoffs in the design of analog circuits,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1212–1224, Jun. 2005.
[3]J. Lin, I. Mano, M. Miyahara, and A. Matsuzawa, “Ultra low-voltage high-speed flash ADC design strategy based on FoM-delay product,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 8, pp. 1518–1527, Aug. 2015.
[4]Y. Xu, L. Belostotski, and J. W. Haslett, “A 65-nm CMOS 10-GS/s 4-bit background-calibrated noninterleaved flash ADC for radio astronomy,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 11, pp. 2316–2325, Nov. 2014.
[5]Y.-Z. Lin, C.-W. Lin, and S.-J. Chang, “A 5-bit 3.2-GS/s flash ADC with a digital offset calibration scheme,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 3, pp. 509–513, Mar. 2010.
[6]J.-I. Kim, B.-R.-S. Sung, W. Kim, and S.-T. Ryu, “A 6-b 4.1-GS/s flash ADC with time-domain latch interpolation in 90-nm CMOS,” IEEE J. Solid-State Circuit, vol. 48, no. 6, pp. 1429–1441, Jun. 2013.
[7]Y. Nakajima, A. Sakaguchi, T. Ohkido, N. Kato, T. Matsumoto, and M. Yotsuyanagi, “A background self-calibrated 6 b 2.7 GS/s ADC with cascade-calibrated folding-interpolating architecture,” IEEE J. Solid-State Circuit, vol. 45, no. 4, pp. 707–718, Apr. 2010.
[8]G. Van der Plas, S. Decoutere, and S. Donnay, “A 0.16 pJ/conversion-step 2.5 mW 1.25 GS/s 4 b ADC in a 90 nm digital CMOS process,” in IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 2006, pp. 1310–1312.
[9]H. Okada, Y. Hashimoto, K. Sakata, T. Tsukada, and K. Ishibashi, “Offset calibrating comparator array for 1.2-V, 6 bit, 4-GSample/s flash ADCs using 0.13μm generic CMOS technology,” in Proc. 29th Eur. Solid-State Circuits Conf., Sep. 2003, pp. 711–714.
[10]R. C. Taft, C. A. Menkus, M. R. Tursi, O. Hidri, and V. Pons, “A 1.8-V 1.6-GSample/s 8-b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2107–2115, Dec. 2004.
[11]E. Alpman, H. Lakdawala, L. R. Carley, and K. Soumyanath, “A 1.1 V 50 mW 2.5 GS/s 7 b time-interleaved C-2C SAR ADC in 45 nm LP digital CMOS,” in IEEE Int. Solid-State Circuits Conf.-Dig. Tech. Papers, Feb. 2009, pp. 76–77 and 77a.
[12]M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, “A 10 b 50 MS/s 820μW SAR ADC with on-chip digital calibration,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 384–385.
[13]P. M. Figueiredo et al., “A 90 nm CMOS 1.2 V 6 b 1 GS/s two-step subranging ADC,” in IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 2006, pp. 2320–2329.
[14]B. Verbruggen, P. Wambacq, M. Kuijk, and G. Van der Plas, “A 7.6 mW 1.75 GS/s 5 bit flash A/D converter in 90 nm digital CMOS,” in IEEE Symp. VLSI Circuit Dig. Tech. Papers, Jun. 2008, pp. 14–15.
[15]C.-C. Lee, C.-M. Yang, and T.-H. Kuo, “A compact low-power flash ADC using auto-zeroing with capacitor averaging,” in Proc. IEEE Int. Conf. Electron Devices Solid-State Circuits, Jun. 2013, pp. 1–2.
[16]V. H.-C. Chen and L. Pileggi, “An 8.5 mW 5 GS/s 6 b flash ADC with dynamic offset calibration in 32 nm CMOS SOI,” in Symp. VLSI Circuit Dig. Tech. Papers, Jun. 2013, pp. C264–C265.
[17]C.-Y. Chen, M. Q. Le, and K. Y. Kim, “A low power 6-bit flash ADC with reference voltage and common-mode calibration,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1041–1046, Apr. 2009.
[18]H.-Y. Chang and C.-Y. Yang, “A high-speed low-power calibrated flash ADC,” in Proc. IEEE Int. Symp. Circuits Syst., Jun. 2014, pp. 2369–2372.
[19]K.-L. J. Wong and C.-K. K. Yang, “Offset compensation in comparators with minimum input-referred supply noise,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 837–840, May 2004.
[20]M. El-Chammas and B. Murmann, “A 12-GS/s 81-mW 5-bit time-interleaved flash ADC with background timing skew calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 838–847, Apr. 2011.
[21]B. Razavi, “Principal of data converter system design,” IEEE Press, 1995.
[22]K. Uyttenhove and M. S. J. Steyaert, “Speed-power-accuracy tradeoff in high-speed CMOS ADCs,” IEEE Trans. Circuits Syst. II, vol. 49, no. 4, pp. 280-287, Apr. 2002.
[23]M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433–1439, Oct. 1989.
[24]P. Kinget and M. Steyaert, “Impact of transistor mismatch on the speed–accuracy–power trade-off of analog CMOS circuits,” in Proc. Custom Integrated Circuits Conf., May 1996, pp. 333–336.
[25]H. Kimura, A. Matsuzawa, T. Nakamura, and S. Sawada, “A 10-b 300MHz interpolation-parallel A/D Converter,” IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 438-446, Apr. 1993.
[26]B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148–1158, Jul. 2004.
[27]H. Pan and A. A. Abidi, “Spatial filtering in flash A/D converters,” IEEE Trans. Circuits Syst. II, vol. 50, no. 8, pp. 424-436, August 2003.
[28]C. Sandner, M. Clara, A. Santner, T. Hartig, and F. Kutter, “A 6-bit 1.2-GS/s low-power flash-ADC in 0.13-μm digital CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1499–1505, Jul. 2005.
[29]P. C. S. Scholtens and M. Vertrege, “A 6-b 1.6Gsample/s flash ADC in 0.18-μm CMOS using averaging termination,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1599–1609, Dec. 2002.
[30]X. Jiang and M.-C. F. Chang, “A 1-GHz signal bandwidth 6-bit CMOS ADC with power-efficient averaging,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 532–535, Feb. 2005.
[31]B. Razavi and B. A. Wooley, “Design techniques for high-speed, high-resolution comparators” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1916–1926, Dec. 1992.
[32]J. Mulder, C. M. Ward, C.–H. Lin, D. Kruse, J. R. Westra, M. Lugthart, E. Arslan, R. J. van de Plassche, K, Bult, and F. M. L. van der Goes, “A 21-mW 8-b 125 MSample/s ADC in 0.09-mm2 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2116–2125, Dec. 2004.
[33]M. Chahardori, M. Sharifkhani, and S. Sadughi, “A 4-Bit, 1.6 GS/s low power flash ADC, based on offset calibration and segmentation,” IEEE Trans. Circuits Syst. I, vol. 60, no. 9, pp. 2285-2297, Sep. 2013.
[34]Y. Nakajima, N. Kato, A. Sakaguchi, T. Ohkido, and T. Miki, “A 7-bit, 1.4 GS/s ADC with offset drift suppression techniques for one-time calibration,” IEEE Trans. Circuits Syst. I, vol. 60, no. 8, pp. 1979-1990, Aug. 2013.
[35]J. Yao, J. Liu, and H. Lee, “Bulk voltage trimming offset calibration for high-speed flash ADCs,” IEEE Trans. Circuits Syst. II, vol. 57, no. 2, pp. 110-114, Feb. 2010.
[36]C.-C. Huang, and J.-T. Wu, “A background comparator calibration technique for flash analog-to-digital converters,” IEEE Trans. Circuits Syst. I, vol. 52, no. 9, pp. 1732-1740, Sep. 2005.
[37]Y.-H. Chung, and J.-T. Wu, “A CMOS 6-mW 10-bit 100-MS/s two-step ADC,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2217-2226, Nov. 2010.
[38]C.-C. Huang, C.-Y. Wang, and J.-T. Wu, “A CMOS 6-Bit 16-GS/s time-interleaved ADC using digital background calibration techniques,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 848-858, Apr. 2011.
[39]J.-I. Kim, D.-R. Oh, D.-S. Jo, B.-R.-S. Sung, and S.-T. Ryu, “A 65 nm CMOS 7b 2GS/s 20.7mW flash ADC with cascaded latch interpolation,” IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2319-2330, Oct. 2015.
[40]R. C. Taft, C. A. Menkus, M. R. Tursi, O. Hidri, and V. Pons, “A 1.8-V 1.6-GSample/s 8-b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2107-2115, Dec. 2004.
[41]Y.-S. Shu, “A 6 b 3GS/s 11mW fully dynamic flash ADC in 40 nm CMOS with reduced number of comparators,” in Dig. Symp. VLSI Circuits, 2012, pp. 26-27.
[42]V. H.-C. Chen and L. Pileggi, “An 8.5 mW 5GS/s 6 b flash ADC with dynamic offset calibration in 32 nm CMOS SOI,” in Dig. Symp. VLSI Circuits, 2013, pp. 264-265.
[43]H. B. Bakoglu, Circuit, Interconnections, and Packaging for VLSI, Ch. 5, Addison-Wesley Publishing Co., 1990.
[44]A. Wilnai, “Open-ended RC line model predicts MOSFET IC response,” EDN, pp. 53-54, Dec. 1970.
[45]A. Nikoozadeh, and B. Murmann “An analysis of latch comparator offset due to load capacitor mismatch,” IEEE Trans. Circuits Syst. II, vol. 53, no. 12, pp. 1398-1402, Dec. 2006.
[46]C. W. Mangelsdorf “A 400-MHz input flash converter with error correction,” IEEE J. Solid-State Circuits, vol. 25, no. 1, pp. 184-191, Feb. 1990.
[47]K. Uyttenhove and M. S. J. Steyaert “A 1.8-V 6-Bit 1.3-GHz flash ADC in 0.25-μm CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1115-1122, Jul. 2003.
[48]A. T. Do, Z.-H. Kong, and K.-S. Yeo, “Criterion to evaluate input-offset voltage of a latch-type sense amplifier” IEEE Trans. Circuits Syst. I, vol. 57, no. 1, pp. 83-92, Jan. 2010.
[49]J. He, S. Zhan, D. Chen and R. L. Geiger, “Analyses of static and dynamic random offset voltages in dynamic comparator” IEEE Trans. Circuits Syst. I, vol. 56, no. 5, pp. 911-919, May 2009.
[50]T. W. Matthews and P. L. Heedley, “A simulation method for accurately determining DC and dynamic offsets in comparators,” 48th Midwest Symposium on Circuits and Systems, pp. 1815-1818, 2005.
[51]H.-Y. Chang and C.-Y. Yang, “A reference voltage interpolation-based calibration method for flash ADCs,” accepted by IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊