跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.89) 您好!臺灣時間:2025/11/30 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宜樺
研究生(外文):Yi-Hua Tsai
論文名稱:三角形不規則網格之分布型降雨--逕流模式
論文名稱(外文):Distributed Rainfall-Runoff Model Based on Triangulated Irregular Networks
指導教授:王如意
指導教授(外文):Ru-yih Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業工程學研究所
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:100
中文關鍵詞:三角形不規則網格分布型降雨--逕流模式
外文關鍵詞:Triangulated Irregular NetworksDistributed Rainfall-Runoff Model
相關次數:
  • 被引用被引用:8
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的乃在建立一種可真實反應集水區地形結構及分布逕流歷程等特性之分布型降雨─逕流模式,冀以提供本省中、上游集水區降雨─逕流模擬之應用。
在集水區地形模擬方面,本研究採用三角形不規則網格(Triangulated Irregular Networks, TIN)數值地形模式,將集水區劃分為若干小分區,提供降雨─逕流模式所需之分布型地文參數。然而,眾多三角網格所構成之坡地元件實隱藏著複雜多變之漫地流流路,對降雨─逕流模式之建立上帶來一大問題。本研究則嘗試將原始漫地流流路予以保留,輔以電腦程式自動化建構分布型降雨─逕流模式所需之地文資料,期以更有效率且精確之方法解決此一應用上之瓶頸。
文中首先利用地理資訊系統套裝軟體(ARC/INFO)建立具研究區域地形變化代表性之點圖層(VIP),以及該集水區之河川網路與邊界兩圖層,透過此三種圖層建構代表該區域地形變化之三角形不規則網格;其次,藉由三角形不規則網格彼此之位向關係建立一組資料儲存格式,以便將集水區中所有劃分之小分區予以串接,進而建立三角網格之上下游關係;再者,以運動波理論為基礎,配合三角網格之各種地文資料,進行漫地流與河渠流之有限差分演算,求得集水區出流口之逕流量;最後,嘗試以最佳參數平均值法、整體最佳參數優選法以及模糊規劃參數優選法等方式進行模式之參數優選,並評估此三種參數優選方法之可行性。
研究中所建立三角形不規則網格之分布型降雨─逕流模式,以大漢溪流域之橫溪上游集水區九場颱洪事件,分別以三種參數優選方法所得之最佳參數代入模式中進行模擬,均獲致令人滿意之結果,故研究中所提出之參數優選概念應屬可行。本模式亦可用於推估中上游集水區颱洪事件逕流之分布歷程,提供台灣坡地集水區防洪規劃治理時之參考應用。
The objective of this study is to establish and evaluate a distributed rainfall-runoff model based on triangulated irregular networks (TIN). Because of reflecting real terrain as a distributed runoff process, this model should be able to provide a better application for rainfall-runoff simulation of upland watersheds.
The triangulated irregular networks digital terrain model (TIN-DTM) is used to divide the project watershed and provides topographic data, which the model needs in the topographic analysis system. When developing a distributed rainfall-runoff model with the TIN-DTM, the most difficult problem is that there are too many overland flow paths to calculate. Therefore, this study suggests that the original overland flow paths should be reserved, and use FORTRAN programs to set up an available configuration of topographic data automatically. It provides a more accurate and efficient way to solve this problem.
To establish a distributed rainfall-runoff model with TIN-DTM, there are two major processes. First, ARC/INFO software of Geographic Information System is used to create three kinds of coverage: stream networks coverage, boundary coverage and very important point (VIP) coverage to represent the topographic variation of a basin. The TIN of the project area can be established by using these coverages. Each triangle in the TIN-DTM is depicted by three sets of data catalog, which are used to specify water flow direction and connect every triangle according to their topographic relations. Second, the kinematic wave model with finite-difference approximations is used to calculate the overland and channel flow of the basin.
The parameters of this model are determined by three parameter optimization methods. That includes the mean of every optimum parameter, the optimum parameters of total examining events and the fuzzy programming parameter optimization, respectively. The second and the third methods have a new concept of the parameter optimization: all examining issues are regarded as a unity. The feasibility of these three optimization methods is assessed in order to examine their applicability in this model.
The model as well as the parameter optimization methods established in this study is applied to Heng-Chi upstream watershed, a tributary of Tanshui River Basin, and the simulation results are very satisfactory. Therefore, the concept of parameter optimizations suggested in this study is adequate and practical. This model, moreover, provides a new approach to flood forecast and management of hillside watersheds in Taiwan.
摘 要 I
ABSTRACTII
目 錄 IV
圖 錄 VI
表 錄 X
第一章緒論 1
一、研究動機與方法 1
二、文獻回顧 2
第二章三角形不規則網格之相關理論 7
一、Delaunay三角網格 7
二、三角網格之坡向理論 13
第三章運動波理論15
一、Saint-Venant方程式15
二、運動波模式21
第四章模式之建立24
一、三角形不規則網格地形模式 24
二、降雨-逕流模式29
第五章參數優選 40
一、模糊規劃理論40
二、模式參數最佳化49
第六章模式檢定與驗證54
一、研究區域簡介54
二、資料蒐集與整理54
三、研析步驟 55
四、參數之敏感度分析56
五、模式適合性檢定57
第七章結果與討論59
第八章結論與建議65
一、結論 65
二、建議 66
參考文獻 67
謝 誌 71
附 圖 73
附 表 91
簡 歷 100
1. 王如意、易任:應用水文學,上、下冊,國立編譯館出版社,茂昌圖書公司發行,1990。
2. 王如意、李戎威:「核胞模式之理論研析及其應用於流域之洪水演算」,農業工程學報,第35卷第4期,pp. 1-23 ,1989。
3. 林建元、廖文祥:地理資訊系統-ARC/INFO入門,松崗電腦圖書資料股份有限公司,1991。
4. 林基興:模糊思考-模糊邏輯的新科學,全華科技圖書股份有限公司,1995。
5. 張乃斌:環境數學系統優化原理,新雅出版社,1997。
6. 游保杉、鄭玉荻、蔡長泰:「應用全域最佳化技巧於分布型降雨-逕流模式」,台灣水利,第43卷第2期,pp. 45-53,1995。
7. 賴進貴:「數值地形模式比較之研究」,國立台灣大學地理學系地理學報,第17期,pp. 87-100,1994。
8. Beven, K. J., "Distributed Model," Chap.13, Hydrological Forecasting, John Wiley, New York, pp. 405-435, 1985.
9. Carrol, R., "Automated Gully Delineation Using Digital Elevation Data," ACSM-ASP 49th Annu. Meet., Washington, D.C., Tech. Pap., pp. 144-151, 1983.
10. Chow, V. T., Maidment, D. R. and Mays, L. W., "Distributed Flow Routing," Chap. 9, Applied Hydrology, McGraw-Hill International Editions, pp. 272-309, 1988.
11. Collins, S. H., "Terrain Parameters Directly from DTM," Can. Surv., Vol. 29, No. 5, pp. 507-518, 1975.
12. Costa-Cabral, M. and Burges, S. J., "Digital Elevation Model Networks: a Model of Flow over Hillslopes for Computation of Contributing and Dispersal Areas," Water Resources Research, Vol. 30, No. 6, pp. 1681-1692, 1994.
13. Delgado, M., Kacprzyk, J., Verdegay, J. L. and Vila, M. A., Fuzzy Optimization, Physica-Verlag, 1994.
14. Freeman, T. G., "Calculating Catchment Area with Divergent Flow Based on a Regular Grid," Comput. Geosic., Vol. 17, No. 3, pp. 413-422, 1991.
15. Jenson, S. K. and Domingue, J. O., "Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis," Photogrammetric Engineering and Remote Sensing, Vol. 54, No. 11, pp. 1593-1600, November 1988.
16. Jonch-Clausen, T., "Systeme Hydrologique Europeen: a Short Description," SHE Report 1, Danish Hydraulics Institute, Horsholm, Denmark, 1979.
17. Jones, N. L., Wright, S. G. and Maidment, D. R., "Watershed Delineation with Triangle-Based Terrain Models," Journal of Hydraulic Engineering, Vol. 116, No. 10, pp. 1232-1251, 1990.
18. Kuchment, L. S., Demidov, V. N., Naden, P. S. and Cooper, D. M., "Rainfall-Runoff Modelling of the Ouse Basin, North Yorkshire: an Application of a Physically Based Distributed Model," Journal of Hydrology, Vol. 181, pp. 323-342, 1996.
19. Lee, D. T., "On Finding k-Nearest Neighbors in the Plane," Technical Report Eng. 76-2216, Coordinated Science Laboratory, University of Illinois, Urbana, Illinois, 1976.
20. Lawson, C. L., "Generation of a Triangular Grid with Applications to Contour Plotting," Technical Memo. 299, Jet Propulation Laboratory, Pasadena, Califormia, February 1972.
21. Lawson, C. L., "Software for C1 Surface Interpolation," Mathematical Software III, J. Rice, Ed., Academic Press, New York, 1977.
22. Lee, D. T., "Proximity and Reachability in the Plane," Ph.D. Thesis, Coordinated Science Laboratory Report ACT-12, University of Illinois, Urbana, Illinois, 1978.
23. Lee, D. T. and Schachter, B. J., "Two Algorithms for Constructing a Delaunay Triangulation," International Journal of Computer and Information Sciences, Vol. 9, No. 3, 1980.
24. Mark, D. M., "Computer Analysis of Topography: a Comparison of Terrain Storage Methods," Geogr. Ann., 3-4 Ser. A., pp. 179-188, 1975.
25. Marks, D., Dozier, J. and Frew, J., "Automated Basin Delineation from Digital Elevation Data," Geo-Processing, No. 2, pp. 299-311, 1984.
26. Moore, I. D., O''Loughlin, E. M. and Burch, G. J., "A Contour-Based Topographic Model for Hydrological and Ecological Applications," Earth Surface Processes and Landforms, Vol. 13, pp. 305-320, 1988.
27. Morris, E. M., "Forecasting Flood Flows in Grassy and Forested Basins Using a Deterministic Distributed Mathematical Model," In Hydrological Forecasting, IAHS Publication 129, pp. 247-255, 1980.
28. Muzik, I., "Flood Modelling with GIS-Derived Distributed Unit Hydrographs," Hydrological Processes, Vol. 10, No. 9, pp. 1401-1409, 1996.
29. O''Loughlin, E. M., "Prediction of Surface Saturation Zones in Natural Catchments by Topographic Analysis," Water Resources Research, Vol. 22, No. 5, pp. 794-804, 1986.
30. Palacios-Velez, O. L. and Cuevas-Renaud, B., "Automated River-Course, Ridge and Basin Delineation From Digital Elevation Data," Journal of Hydrology, Vol. 86, pp. 299-314, 1986.
31. Palacios-Velez, O. L. and Cuevas-Renaud, B., "SHIFT: a Distributed Runoff Model Using Irregular Triangular Facets," Journal of Hydrology, Vol. 134, pp. 35-55, 1992.
32. Peucker, T. K. and Douglas, D. H., "Detection of Surface Specific Points by Local Parallel Processing of Discrete Terrain Elevation Data," Computer Graphics Image Processing, Vol. 4, pp. 375-387, 1975.
33. Peucker, T. K., Fowler, R. J., Little, J. J. and Mark, D. M., "Digital Representation of Three-Dimensional Surfaces by Triangulated Irregular Networks (TIN)," Tech. Rept. 10, ORN, Contract No. N00014-75-C-0886, Dept. Geogr., Simon Frazer Univ., Burnaby, B.C., Canada, 1976.
34. Peucker, T. K., Fowler, R. J., Little, J. J. and Mark, D. M., "The Triangulated Irregular Network," Proc. ASP-ACSM Symp. on DTM''s, St. Louis, Mo., 1978.
35. Polarski, M., "Distributed Rainfall-Runoff Model Incorporating Channel Extension and Gridded Digital Maps," Hydrological Processes, Vol. 11, pp. 1-11, 1997.
36. Quinn, P., Beven, K., Chevallier, P. and Planchon, O., "The Prediction of Hillslope Flow Paths for Distributed Hydrological Modeling Using Digital Terrain Models," Hydrological Processes, Vol. 5, pp. 59-79, 1991.
37. Shamos, M. I. and Hoey, D., "Closest-Point Problems," Proceedings of the 16th Annual Symposium on the Foundations of Computer Science, pp. 151-162, 1975.
38. Sibson, R., "Locally Equiangular Triangulations," Computer Journal, Vol. 21, No. 3, pp. 243-245, 1978.
39. Sunada, K. and Hong, T. F., "Effects of Slope Conditions on Direct Runoff Characteristics by the Interflow and Overland Flow Model," Journal of Hydrology, Vol. 102, pp. 323-334, 1988.
40. Tachikawa, Y., Shiiba, M. and Takasao, T., "Development of a Basin Geomorphic Information System Using a TIN-DEM Data Structure," Water Resources Bulletin, Vol. 30, No. 1, pp. 3-30, 1994.
41. Tachikawa, Y., Shiiba, M. and Takasao, T., "TIN-Based Topographic Modelling and Runoff Prediction Using a Basin Geomorphic Information System," Application of GIS in Hydrology and Water Resources Management, Proceedings of the Vienna Conference, Italy, pp. 225-232, 1996.
42. Tarvydas, A., "Terrain Approximation by Triangular Facets," ASP-ACSM 44th Annu. Meet., Washington, D.C., Tech. Pap., pp. 524-532, 1984.
43. Vieux, B. E., "Geographic Information Systems and Non-Point Source Water Quality and Quantity Modeling," Hydrological Process, Vol. 5, pp.101-113, 1991.
44. Yu, P. S. and Jeng, Y. C., "A Study on Grid Based Distributed Rainfall Runoff Models," Water Resources Management, Vol. 11, pp. 83-99, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top