|
1.Yabuuchi, H., et al., Salivary gland tumors: diagnostic value of gadolinium-enhanced dynamic MR imaging with histopathologic correlation. Radiology, 2003. 226(2): p. 345-54. 2.Ikeda, M., et al., Warthin tumor of the parotid gland: diagnostic value of MR imaging with histopathologic correlation. AJNR Am J Neuroradiol, 2004. 25(7): p. 1256-62. 3.Alibek, S., et al., The value of dynamic MRI studies in parotid tumors. Acad Radiol, 2007. 14(6): p. 701-10. 4.Yabuuchi, H., et al., Parotid gland tumors: can addition of diffusion-weighted MR imaging to dynamic contrast-enhanced MR imaging improve diagnostic accuracy in characterization? Radiology, 2008. 249(3): p. 909-16. 5.Hisatomi, M., et al., Diagnostic value of dynamic contrast-enhanced MRI in the salivary gland tumors. Oral Oncol, 2007. 43(9): p. 940-7. 6.Lam, P.D., et al., Differentiating benign and malignant salivary gland tumors: diagnostic criteria and the accuracy of dynamic contrast-enhanced MRI with high temporal resolution. Br J Radiol, 2015: p. 20140685. 7.Juan, C.J., et al., Perfusion characteristics of late radiation injury of parotid glands: quantitative evaluation with dynamic contrast-enhanced MRI. Eur Radiol, 2009. 19(1): p. 94-102. 8.Cheng, C.C., et al., Parotid perfusion in nasopharyngeal carcinoma patients in early-to-intermediate stage after low-dose intensity-modulated radiotherapy: evaluated by fat-saturated dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging, 2013. 31(8): p. 1278-84. 9.Roberts, C., et al., Glandular function in Sjogren syndrome: assessment with dynamic contrast-enhanced MR imaging and tracer kinetic modeling--initial experience. Radiology, 2008. 246(3): p. 845-53. 10.Lee, F.K., et al., Radiation injury of the parotid glands during treatment for head and neck cancer: assessment using dynamic contrast-enhanced MR imaging. Radiat Res, 2011. 175(3): p. 291-6. 11.Houweling, A.C., et al., MRI to quantify early radiation-induced changes in the salivary glands. Radiother Oncol, 2011. 100(3): p. 386-9. 12.Iguchi, H., et al., Epithelioid myoepithelioma of the accessory parotid gland: pathological and magnetic resonance imaging findings. Case Rep Oncol, 2014. 7(2): p. 310-5. 13.Sumi, M., et al., Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology, 2012. 263(3): p. 770-7. 14.Espinoza, S., et al., Warthin''s tumor of parotid gland: Surgery or follow-up? Diagnostic value of a decisional algorithm with functional MRI. Diagn Interv Imaging, 2014. 15.Kato, H., et al., Perfusion imaging of parotid gland tumours: usefulness of arterial spin labeling for differentiating Warthin''s tumours. Eur Radiol, 2015. 16.Horikoshi, T., et al., Head and neck MRI of Kimura disease. Br J Radiol, 2011. 84(1005): p. 800-4. 17.Zhang, L., et al., Functional evaluation with intravoxel incoherent motion echo-planar MRI in irradiated salivary glands: a correlative study with salivary gland scintigraphy. J Magn Reson Imaging, 2001. 14(3): p. 223-9. 18.Marzi, S., et al., Early radiation-induced changes evaluated by intravoxel incoherent motion in the major salivary glands. J Magn Reson Imaging, 2015. 41(4): p. 974-82. 19.Schwenzer, N.F., et al., MR measurement of blood flow in the parotid gland without contrast medium: a functional study before and after gustatory stimulation. NMR Biomed, 2008. 21(6): p. 598-605. 20.Chang, H.C., et al., Effects of gender, age, and body mass index on fat contents and apparent diffusion coefficients in healthy parotid glands: an MRI evaluation. Eur Radiol, 2014. 24(9): p. 2069-76. 21.Dutta, S.K., et al., Functional and structural changes in parotid glands of alcoholic cirrhotic patients. Gastroenterology, 1989. 96(2 Pt 1): p. 510-8. 22.Izumi, M., et al., Premature fat deposition in the salivary glands associated with Sjogren syndrome: MR and CT evidence. AJNR Am J Neuroradiol, 1997. 18(5): p. 951-8. 23.Tartaglino, L.M., V.M. Rao, and D.A. Markiewicz, Imaging of radiation changes in the head and neck. Semin Roentgenol, 1994. 29(1): p. 81-91. 24.Tofts, P.S., Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging, 1997. 7(1): p. 91-101. 25.Donahue, K.M., et al., Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med, 1994. 32(1): p. 66-76. 26.Tofts, P.S. and A.G. Kermode, Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med, 1991. 17(2): p. 357-67. 27.Grobner, T., Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant, 2006. 21(4): p. 1104-8. 28.Marckmann, P., et al., Clinical manifestation of gadodiamide-related nephrogenic systemic fibrosis. Clin Nephrol, 2008. 69(3): p. 161-8. 29.Mendichovszky, I.A., et al., Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. Pediatr Radiol, 2008. 38(5): p. 489-96; quiz 602-3. 30.Gilliet, M., et al., Successful treatment of three cases of nephrogenic fibrosing dermopathy with extracorporeal photopheresis. Br J Dermatol, 2005. 152(3): p. 531-6. 31.Brix, G., et al., Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr, 1991. 15(4): p. 621-8. 32.Wood, M.L. and P.A. Hardy, Proton relaxation enhancement. J Magn Reson Imaging, 1993. 3(1): p. 149-56. 33.Griffith, J.F., et al., Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology, 2005. 236(3): p. 945-51. 34.Ma, H.T., et al., Modified brix model analysis of bone perfusion in subjects of varying bone mineral density. J Magn Reson Imaging, 2010. 31(5): p. 1169-75. 35.Tofts, P.S., B. Berkowitz, and M.D. Schnall, Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med, 1995. 33(4): p. 564-8. 36.Tofts, P.S., et al., Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging, 1999. 10(3): p. 223-32. 37.Schmidt, M.A., et al., Breast dynamic contrast-enhanced examinations with fat suppression: are contrast-agent uptake curves affected by magnetic field inhomogeneity? Eur Radiol, 2013. 23(6): p. 1537-45. 38.Juan, C.J., et al., Salivary glands: echo-planar versus PROPELLER Diffusion-weighted MR imaging for assessment of ADCs. Radiology, 2009. 253(1): p. 144-52. 39.Chang, H.C., et al., Parotid fat contents in healthy subjects evaluated with iterative decomposition with echo asymmetry and least squares fat-water separation. Radiology, 2013. 267(3): p. 918-23. 40.Hao, W., et al., Influence of scan duration on the estimation of pharmacokinetic parameters for breast lesions: a study based on CAIPIRINHA-Dixon-TWIST-VIBE technique. Eur Radiol, 2015. 25(4): p. 1162-71. 41.Le, Y., et al., Improved T1, contrast concentration, and pharmacokinetic parameter quantification in the presence of fat with two-point dixon for dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Med, 2015.
|