|
[1] Zhang, Y. L., & Cao, F. (2015). Fine particulate matter (PM 2.5) in China at a city level. Scientific Reports, 5, 14884. [2] Atkinson, R. W., Ross Anderson, H., Sunyer, J., Ayres, J. O. N., BACCINI, M., VONK, J. M., ... & SCHWARTZ, J. (2001). Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. American journal of respiratory and critical care medicine, 164(10), 1860-1866. [3] World Health Organization (2013) Health effects of particulate matter [4] Wakamatsu, S., Morikawa, T., & Ito, A. (2013). Air pollution trends in Japan between 1970 and 2012 and impact of urban air pollution countermeasures. Asian Journal of Atmospheric Environment, 7(4), 177-190. [5] Pan, X., Li, G., & Gao, T. (2012). Dangerous breathing-PM2. 5: measuring the human health and economic impacts on China’s largest cities. Technical report, Greenpeace. [6] State of the science fact sheet air quality. http://www.noaa.gov/ factsheets/new, September 2009 [7] Kusiak, A., Zheng, H., & Song, Z. (2009). Short-term prediction of wind farm power: a data mining approach. IEEE Transactions on energy conversion, 24(1), 125-136. [8] Wu, C. H., Ho, J. M., & Lee, D. T. (2004). Travel-time prediction with support vector regression. IEEE transactions on intelligent transportation systems, 5(4), 276-281. [9] Ding, A., Zhao, X., & Jiao, L. (2002). Traffic flow time series prediction based on statistics learning theory. In Intelligent Transportation Systems, 2002. Proceedings. The IEEE 5th International Conference on (pp. 727-730). IEEE. [10] Izzah, A., Sari, Y. A., Widyastuti, R., & Cinderatama, T. A. (2017, November). Mobile app for stock prediction using Improved Multiple Linear Regression. In Sustainable Information Engineering and Technology (SIET), 2017 International Conference on (pp. 150-154). IEEE. [11] Amral, N., Ozveren, C. S., & King, D. (2007, September). Short term load forecasting using multiple linear regression. In Universities Power Engineering Conference, 2007. UPEC 2007. 42nd International (pp. 1192-1198). IEEE. [12] Ganesh, S. S., Modali, S. H., Palreddy, S. R., & Arulmozhivarman, P. (2017, May). Forecasting air quality index using regression models: A case study on Delhi and Houston. In Trends in Electronics and Informatics (ICEI), 2017 International Conference on (pp. 248-254). IEEE. [13] Tianlong, B., & Wentao, H. (2013, January). Traffic accident prediction based on time series linear mode. In Conference Anthology, IEEE (pp. 1-3). IEEE. [14] Menon, S. P., Bharadwaj, R., Shetty, P., Sanu, P., & Nagendra, S. (2017, December). Prediction of temperature using linear regression. In Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), 2017 International Conference on (pp. 1-6). IEEE. [15] Zhao, C., van Heeswijk, M., & Karhunen, J. (2016, December). Air quality forecasting using neural networks. In Computational Intelligence (SSCI), 2016 IEEE Symposium Series on (pp. 1-7). IEEE. [16] Huang, M., Zhang, T., Wang, J., & Zhu, L. (2015, September). A new air quality forecasting model using data mining and artificial neural network. In Software Engineering and Service Science (ICSESS), 2015 6th IEEE International Conference on (pp. 259-262). IEEE. [17] Dedovic, M. M., Avdakovic, S., Turkovic, I., Dautbasic, N., & Konjic, T. (2016, October). Forecasting PM10 concentrations using neural networks and system for improving air quality. In Telecommunications (BIHTEL), 2016 XI International Symposium on (pp. 1-6). IEEE. [18] Sharma, M., Aggarwal, S., Bose, P., & Deshpande, A. (2003, August). Meteorology-based forecasting of air quality index using neural network. In Industrial Informatics, 2003. INDIN 2003. Proceedings. IEEE International Conference on (pp. 374-378). IEEE. [19] Wang, H., Wang, J., & Wang, X. (2017, July). An AQI Level Forecasting Model Using Chi-square Test and BP Neural Network. In Proceedings of the 2nd International Conference on Intelligent Information Processing (p. 24). ACM. [20] Kingsy, G. R., Manimegalai, R., Geetha, D. M., Rajathi, S., Usha, K., & Raabiathul, B. N. (2016, November). Air pollution analysis using enhanced K-Means clustering algorithm for real time sensor data. In Region 10 Conference (TENCON), 2016 IEEE(pp. 1945-1949). IEEE. [21] Huang, P., Zhang, J., Tang, Y., & Liu, L. (2015). Spatial and temporal distribution of PM2. 5 pollution in Xi’an City, China. International journal of environmental research and public health, 12(6), 6608-6625. [22] Mahajan, S., Liu, H. M., Tsai, T. C., & Chen, L. J. (2018). Improving the Accuracy and Efficiency of PM2. 5 Forecast Service Using Cluster-based Hybrid Neural Network Model. IEEE Access. [23] Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting. springer. [24] Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons. [25] Jeong, J. I., Park, R. J., Woo, J. H., Han, Y. J., & Yi, S. M. (2011). Source contributions to carbonaceous aerosol concentrations in Korea. Atmospheric environment, 45(5), 1116-1125. [26] Guocai, Z. (2004). Progress of Weather Research and Forecast (WRF) Model and Application in the United States [J]. Meteorological Monthly, 12, 005. [27] Zhang, C. Y., Chen, C. P., Gan, M., & Chen, L. (2015). Predictive deep Boltzmann machine for multiperiod wind speed forecasting. IEEE Transactions on Sustainable Energy, 6(4), 1416-1425. [28] Li, X., Peng, L., Hu, Y., Shao, J., & Chi, T. (2016). Deep learning architecture for air quality predictions. Environmental Science and Pollution Research, 23(22), 22408-22417. [29] Zheng, Y., Liu, F., & Hsieh, H. P. (2013, August). U-air: When urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1436-1444). ACM. [30] Shi, X., Li, Q., Qi, Y., Huang, T., & Li, J. (2017, November). An accident prediction approach based on XGBoost. In Intelligent Systems and Knowledge Engineering (ISKE), 2017 12th International Conference on (pp. 1-7). IEEE. [31] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). ACM [32] Zhu, J. Y., Zhang, C., Zhang, H., Zhi, S., Li, V. O., Han, J., & Zheng, Y. (2017). pg-Causality: Identifying Spatiotemporal Causal Pathways for Air Pollutants with Urban Big Data. IEEE Transactions on Big Data. [33] Groetsch, C. W. (1984). The theory of tikhonov regularization for fredholm equations. 104p, Boston Pitman Publication.1 [34] Carvalho, L., & Jones, C. (2016). Monsoons and climate change (1st ed., p. 9). Springer. [35] Weizhen, H., Zhengqiang, L., Yuhuan, Z., Hua, X., Ying, Z., Kaitao, L., ... & Yan, M. (2014). Using support vector regression to predict PM10 and PM2. 5. In IOP Conference Series: Earth and Environmental Science (Vol. 17, No. 1, p. 012268). IOP Publishing. [36] Saxena, A., & Shekhawat, S. (2017). Ambient Air Quality Classification by Grey Wolf Optimizer Based Support Vector Machine. Journal of environmental and public health, 2017. [37] Stoimenova, M., Voynikova, D., Ivanov, A., Gocheva-Ilieva, S., & Iliev, I. (2017, October). Regression trees modeling and forecasting of PM10 air pollution in urban areas. In AIP Conference Proceedings (Vol. 1895, No. 1, p. 030005). AIP Publishing.
|