跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/03 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佑勳
研究生(外文):Lin,Yuhsun
論文名稱:利用同步輻射X光合成電漿螢光金銀合金奈米粒子與應用於表面增強拉曼散射和光激發螢光之研究
論文名稱(外文):Synthesis of Plasmonic Fluorescent Au-Ag Alloy Nanoparticles by Synchrotron X-ray Irradiation and Their Applications in Surface-Enhanced Raman Scattering and Photoluminescence
指導教授:許佳振胡宇光胡宇光引用關係
指導教授(外文):Hsu,ChiaChenHwu,YeuKuang
口試委員:胡宇光許佳振林中魁
口試委員(外文):Hwu,YeuKuangHsu,ChiaChenLin,Chung-Kwei
口試日期:2011-06-20
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理學系暨研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:127
中文關鍵詞:同步輻射X光電漿螢光金銀合金奈米粒子表面增強拉曼散射光激發螢光
外文關鍵詞:Synchrotron X-ray IrradiationPlasmonic FluorescentAu-Ag Alloy NanoparticlesSurface-Enhanced Raman ScatteringPhotoluminescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:477
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,利用極高強度的同步輻射X-ray成功合成出Au-Ag合金奈米粒子。UV-vis吸收光譜和TEM的結果得知其奈米粒子具有均勻的尺寸,大約為2.2 nm~2.3 nm,且可以藉由改變聚乙烯吡咯烷酮(PVP)的量而調整。
Au-Ag合金奈米粒子的表面增強拉曼散射(SERS)光譜會隨著Au-Ag成分比率而改變,代表奈米粒子是高度結晶性的Au-Ag合金,而不是核殼結構。由光激發螢光(PL)量測,發現其螢光特性亦會隨著Au-Ag成分比率而改變。我們也發現在聚乙烯吡咯烷酮(PVP)與Ag奈米粒子之間會產生螢光共振能量轉移(FRET),此機制可增強Ag奈米粒子的螢光放射強度。藉由表面增強拉曼散射(SERS)和光激發螢光(PL)的量測,包覆著聚乙烯吡咯烷酮(PVP)的Au-Ag合金奈米粒子可以被稱為電漿螢光量子點,因為其可以同時具有螢光及電漿特性,有可能應用於顯微影像。

In this thesis, Au-Ag alloy nanoparticles have been successfully synthesized via using extremely high intensity Synchrotron x-ray irradiation. Both UV-visible absorption and TEM results indicate that the nanoparticles are with uniform size about 2.2 nm~2.3 nm, and it can be tuned by changing the quantity of PVP.
The surface-enhanced Raman scattering(SERS)spectra of Au-Ag alloy nanoparticles change with the Au-Ag composition ratio, which indicates the nanoparticles are highly crystalline of true alloy instead of core-shell structure. Photoluminescence(PL)measurements show that the fluorescence properties also can be tuned by changing the Au-Ag composition ratio. We have also found the fluorescence resonance energy transfer(FRET)between PVP and silver nanoparticles. The FRET mechanism can enhance PL emission of silver nanoparticles.
From the surface-enhanced Raman scattering(SERS)and Photoluminescence (PL)measurements, Au-Ag Alloy nanoparticles with PVP can be called plasmonic fluorescent nano dots. It simultaneously provides fluorescence and plasma characteristics and should be useful for multimodal bioimaging applications.

目錄
致謝 I
摘要 IV
Abstract V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 奈米材料簡介 1
1.2 奈米粒子性質 2
1.2.1表面效應(Surface Effect) 2
1.2.2量子尺寸效應(Quantum Size Effect) 3
1.2.3表面電漿效應(Surface Plasmon Effect) 4
1.2.4交互效應(Interaction Effect) 4
1.3 奈米粒子製備方法 5
1.3.1化學方法(Chemical Method) 5
1.3.1.1 氧化還原法(Redox Method) 5
1.3.1.2 光化學法(Photochemical Method) 6
1.3.1.3 溶膠凝膠法(Sol Gel) 6
1.3.1.4 聲波化學法(Ultrasonic Irradiation Method) 7
1.3.1.5 微乳化法(Mirco Emulsion Method) 7
1.3.2物理方法(Physical Method) 8
1.3.2.1 機械球磨法(Mechanical Milling) 8
1.3.2.2 氣體蒸汽法(Gas Evaporation Method) 8
1.3.2.3 氣液固生長法(Vapor-Liquid-Solid Growth, VLS) 9
1.3.2.4 雷射剝削法(Laser Ablation Technique) 9
1.4 奈米材料之應用 10
1.4.1表面增強拉曼散射(SERS) 10
1.4.1.1 Raman光譜 10
1.4.1.2 Raman散射原理 11
1.4.1.3 Raman技術的演進 12
1.4.1.4 表面增強拉曼散射(SERS)光譜 12
1.4.1.5 物理機制部分 13
1.4.1.6 化學機制部分 14
1.4.2光激發螢光(PL) 15
1.4.2.1 量子點(Quantum Dots) 15
1.4.2.2 量子尺寸效應 17
1.4.2.3 光激發螢光(Photoluminescence)原理 18
1.4.2.4 半導體量子點(Quantum Dots) 20
1.4.2.5 金屬量子點(Nano Dots) 22
第二章 文獻回顧 23
2.1 金屬奈米粒子之合成方法 23
2.1.1雙金屬奈米粒子合成 23
2.1.1.1 雙金屬奈米粒子簡介 23
2.1.1.2 雙金屬Au-Ag奈米粒子製備 24
2.1.2同步輻射X-ray合成金屬奈米粒子 28
2.1.2.1 同步輻射X-ray合成單金屬Au奈米粒子 28
2.1.2.2 同步輻射X-ray合成單金屬Ag奈米粒子 30
2.2 金屬奈米粒子之應用 32
2.2.1 表面增強拉曼散射(SERS) 32
2.2.2 光激發螢光(PL) 36
2.2.3 電漿螢光量子點(Plasmanic Fluorescent Quantum Dots) 40
2.3 研究動機與目標 43
第三章 實驗部分 45
3.1 實驗架構 45
3.2 雙金屬Au-Ag合金奈米粒子製備 46
3.2.1國家同步輻射研究中心 46
3.2.2實驗藥品與器材 47
3.2.3實驗藥品配藥部分 47
3.2.4雙金屬Au-Ag合金奈米粒子之實驗流程 48
3.3 雙金屬Au-Ag合金奈米粒子之分析 50
3.3.1紫外光-可見光光譜吸收光譜儀(UV-vis) 50
3.3.2穿透式電子顯微鏡(TEM) 51
3.3.3傅立葉紅外線光譜儀(FT-IR) 52
3.4 表面增強拉曼散射(SERS)光譜量測系統 53
3.5 光激發螢光(PL)光譜量測系統 55
第四章 實驗結果與討論 60
4.1 同步輻射X-ray還原法合成之Au-Ag合金奈米粒子 60
4.1.1紫外光-可見光吸收光譜(UV-vis)分析 60
4.1.2穿透式電子顯微鏡(TEM)分析 63
4.1.3傅立葉紅外線光譜(FT-IR)分析 67
4.2 表面增強拉曼散射(SERS)光譜之量測 71
4.3 光激發螢光(PL)光譜之量測 77
第五章 結論 102
第六章 未來展望 103
參考文獻 104


【1】M. Faraday, Philos. Trans. R. Soc. London 147, 145-181 (1857).
【2】K. Akamatsu, and S. Deki, J. Mater. Chem. 8, 637-640 (1998).
【3】S. Deki, K. Sayo,T. Fujita, A. Yamada, and S. Hayashi, J. Mater. Chem. 9, 943-947 (1999).
【4】C. C. Huang, Z. Yang, K. H. Lee , and H. T. Chang, Angew. Chem. 119, 6948 -6952 (2007)
【5】J. Zheng, and R. M. Dickson, J. Am. Chem. Soc. 124(47), 13982-13983 (2002).
【6】P. Buffat, and J.-P. Borel, Phys. Rev. A 13, 2287 (1976).
【7】C. F. Bohren, and D. R. Huffman, Wiley-Interscience, 541 (1983).
【8】M.S.Yeh, Y. S.Yang, Y. P. Lee, H. F. Lee, Y. H. Yeh, and C. S. Yeh, J.Phys. Chem. B 103, 6851 (1999).
【9】S. Link, Z. L. Wang, and M. A. El-Sayed, J. Phys. Chem. B 103(18), 3529-3533 (1999).
【10】N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R. Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, Langmuir 20(25),11240-11246
(2004).
【11】I. Lisiecki, and M. P. Pileni, J. Am. Chem. Soc. 115 (10), 3887–3896 (1993).
【12】A. Henglein, and D. Meisei, Langmuir 14, 7392-7396 (1998).
【13】K. Esumi, K. Matsuhisa, and K. Torigie, Langmuir 11(9), 3285-3287 (1995).
【14】S. Devarajan, P. Bera, and S. Sampath, Journal of Colloid and Interface Science 290, 117–129 (2005).
【15】A. Henglein, Ultrasonics 25, 6-16 (1987).
【16】N. A. Dhas, H. Cohen, and A. Gredanken, J. Phys. Chem. B 101, 6834-6838 (1997).
【17】D. H. Chen, and C. J. Chen, J. Mater.Chem. 12, 1557-1562 (2002).
【18】A. Pal, S. Shah, and S. Devi, Australian Journal of Chemistry 61(1), 66–71 (2007).
【19】S Yatsuya, S Kasukabe, and R. Uyeda, Japanese Journal of Applied Physics 12(11),1675 (1973).
【20】D. T. Colbert, J. Zhang, S. M. McClure, P. Nikolaev, Z. Chen, J. H. Hafner, D. W. Owens, P. G. Kotula, C. B. Carter, J. H. Weaver, A. G. Rinzler, and R. E.
Smalley, Science 266, 1218–1222 (1994).
【21】Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song, and P. Yang, Chem. Eur. J. 8(6),1260-1268 (2002).
【22】H. W. Kroto, J. R. Heath, S. C. O’Brien, and R. F. Curl& R. E. Smalley, Nature 318, 162-163 (1985).
【23】A. Henglein, J. Phys. Chem. 97, 5457-5471 (1993).
【24】Y. H. Chen, and C. S. Yeh, Chem. Commun. 4, 371-372 (2001).
【25】S. H. Tsai, Y. H. Liu, P. L. Wu, and C. S. Yeh, J. Mater. Chem. 13, 978-980 (2003).
【26】Y. H. Chen, Y. H. Tseng, and C. S. Yeh, J. Mater. Chem. 12, 1419-1422 (2002).
【27】K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R.Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667-1670 (1997).
【28】K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R. R. Dasari, and M. S. Feld, Bioimaging 6(2), 104-110 (1998).
【29】M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys.Lett. 26(2), 163-166 (1974).
【30】D. L. Jeanmaire, and R. P. Van Duyne, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 84(1), 1-20 (1977).
【31】M. G. Albrecht, and J. A. Creighton, J. Am. Chem. Soc. 99(15), 5215-5217 (1977).
【32】D. A. Skoog, F. J. Holler, T. A. Nieman, Principle of instrumental analysis 5th, Saunders College Publishing (1998).
【33】K. Kneipp, H. Kniepp, I. Itzkan, R. R. Dasari , and M. S. Feld, J. Phys.: Condens. Matter 14, R597 (2002).
【34】D. S. Wang, and M. Kerker, Phys. Rev. B 24,1777-1790 (1981).
【35】M. Kerker, O. Siiman, L. A. Bumm , and D. -S. Wang, Applied Optics 19(19), 3253-3255 (1980).
【36】E. J. Zeman , and G. C. Schatz, J. Phys. Chem. 91,634-643 (1987).
【37】H. Xu, J. Aizpurua, M. Kall , and P. Apell, Phys. Rev. E 62(3), 4318-4324 (2000).
【38】A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, J. Phys. :Condens. Mater. 4, 1143 (1992).
【39】R. Kubo, J.Phys. Soc. Jpn. 17, 975 (1962).
【40】A. Kawabata , and R. Kubo, J.Phys. Soc. Jpn. 21, 1765 (1966).
【41】S. V. Gaponenko, “Optical properties of semiconductor nanocrystals”, Cambridge University Press (1998).
【42】M. B. Jr., M. Moronne, P. Gin, S. Weiss , and A. Paul Alivisatos, Science 281, 2013-2016 (1998).
【43】http://zh.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E9%BB%9E, Wikipedia.
【44】M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, J. Phys. Chem. B 101(19), 3706–3712 (1997).
【45】T. G. Schaaff, M. N. Shafigullin, J. T. Khoury, I. Vezmar, R. L. Whetten, W. G. Cullen, P. N. First, C. Gutiérrez-Wing, J. Ascensio, and M. J. Jose-
Yacamán, J. Phys. Chem. B 101(40), 7885–7891 (1997).
【46】M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish,
M. D. Porter, N. D. Evans, and R. W. Murray, Langmuir 14(1), 17–30 (1998).
【47】C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stölzle, N. Fertig , and W. J. Parak, Nano Lett.5(2), 331–338 (2005).
【48】R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella , and W. J. Parak, Chem. Soc. Rev. 37, 1896–1908 (2008).
【49】Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, Small 3(11), 1941–1949 (2007).
【50】S. P. Chandran, J. Ghatak, P.V. Satyam, and M. Sastry, J.Coll. Inter. Sci. 312(2), 498-505 (2007).
【51】J. Yang, J. Y. Lee, and H. P. Too, J. Phys. Chem. B 109(41), 19208-19212 (2005).
【52】A. Henglein, Langmuir 17(8), 2329-2333 (2001).
【53】K. Watanabe, D. Menzel, N. Nilius, and H. J. Freund, Chem. Rev. 106(10), 4301-4320 (2006).
【54】Y. Sun, and Y. Xia, Nano Lett. 3(11), 1569-1572 (2003).
【55】X. Lu, L. Au, J. McLellan, Z. Y. Li, M. Marquez, and Y. Xia, Nano Lett. 7(6), 1764-1769 (2007).
【56】J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.Y. Li, and Y. Xia, Nano Lett. 5(10), 2058-2062 (2005).
【57】R. Ferrando, J. Jellinek, and R. L. Johnston, Chem. Rev. 108(3), 845-910 (2008).
【58】L. M. Liz-MarzBn, and A. P. Philipse, J. Phys. Chem. 99(41), 15120-15128 (1995).
【59】K. Kim, K. L. Kim, and S. J. Lee, Chem. Phys. Lett. 403, 77-82 (2005).
【60】R. G. Freeman, M. B. Hommer, K. C. Grabar, M. A. Jackson, and M. J. Natan, J. Phys. Chem. 100(2), 718-724 (1996).
【61】Y. H. Chen, U. J. Nickel, Chem. Soc. Faraday Trans.89, 2479 (1993).
【62】S. Tokonami, N. Morita, K. Takasaki, and N. Toshima, J. Phys. Chem. 114(23), 10336-10341 (2010).
【63】M. J. Hostetler, C. J. Zhong, B. K. H. Yen, J. Anderegg, S. M. Gross, N. D. Evans, M. Porter, and R. W. Murray, J. Am. Chem. Soc. 120(36), 9396-9397 (1998).
【64】M. P. Mallin, and C. J. Murphy, Nano Letters 2 (11), 1235-1237 (2002).
【65】N. N. Kariuki, J. Luo, M. M. Maye, S. A. Hassan, T. Menard, H. R Naslund, Y. Lin, C. Wang, M. H. Engelhard, and C. J. Zhong, Langmuir 20(25), 11240-11246
(2004).
【66】C. H. Wang, T. E. Hua, C. C. Chien, Y. L. Yu, T. Y. Yang, C. J. Liu, W. H. Leng, Y. Hwu, Y. C. Yang, C.C. Kim, J. H. Je, C. H. Chen, H. M. Lin, and G.
Margaritondo, Mater. Chem. Phys. 106, 323-329 (2007).
【67】C. H. Wang, C. J. Liu, C. L.Wang, C. C. Chien,Y. Hwu, R. S. Liu, C. S. Yang, J. H. Je, H. M. Lin, and G. Margaritondo, Appl. Phys. A 97(2), 295-300 (2009).
【68】M. Wang, J. L. Ao, R. A. Gu, Chemical journal of chinese universites 8, 1518-1521 (2006).
【69】K. S. Shin, C. S. Park, W. Kang, and K. Kim, Chemistry Letters 37(2), 180-181(2008)
【70】K. Kim, I. Lee, and S. J. Lee, Chemical Physics Letters 377, 201-204 (2003).
【71】K. Kim, K. L. Kim, J.Y. Choi, H. B. Lee, and K. S. Shin, J. Phys. Chem. C 114, 3448-3453 (2010).
【72】J. Zheng, C. Zhang, and R. M. Dickson, Phys. Rev. Lett. 93(7), 077402 (2004).
【73】H. Haberland, “Clusters of Atoms and Molecules”, Springer-Verlag, Berlin (1994).
【74】U. Kreibig, and M. Vollmer, “Optical Properties of Metal Clusters, Springer-Verlag”, Berlin (1995).
【75】C.A. J. Lin, T.Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J. L. Shen, H. H. Wang, H. I. Yeh, W. J. Parak, and W. H. Chang, ACS
Nano 3 (2), 395-401 (2009).
【76】T. Mokari, E. Rothenberg, I. Popov, R. Costi, and U. Banin, Science 304, 1787-1790 (2004).
【77】T. Mokari, C. G. Sztrum, A. Salant, E. Rabani, and U. Banin, Nature Mater. 4, 855-863 (2005).
【78】B. Dubertret, M. Calame, and A. J. Libchaber, Nature Biotechnol. 19, 365-370 (2001).
【79】T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, Nano Lett. 7(10), 3157-3164 (2007).
【80】Y. Jin , and X. Gao, Nature Nanotechnology 4, 571-576 (2009).
【81】W. Cai, X. Chen, Small 3(11), 1840-1854 (2007).
【82】N. Toshima, and T. Yonezawa, New J. Chem. 22, 1179-1201 (1998).
【83】P. Mulvaney, Langmuir 12(3), 788-800 (1996).
【84】Jia-Wen Hu, Jian-Feng Li, Bin Ren, De-Yin Wu, Shi-Gang Sun, and Zhong-Qun Tian, J. Phys. Chem. C 111(3), 1105-1112 (2007).
【85】Y. Cui, B. Ren, J. L. Yao, R. A. Gu, and Z. Q. Tian, J. Phys. Chem. B 110(9), 4002-4006 (2006).
【86】K. Mallik, M. Mandal, N. Pradhan, and T. Pal, Nano Lett. 1(6), 319-322 (2001).
【87】F. Karadas, G. Ertas, E. Ozkaraoglu, and S. Suzer, Langmuir 21(1), 437-442 (2005).
【88】C.M. Doudna, M.F. Bertino, F.D. Blum, A.T. Tokuhiro, D. Lahiri-Dey, S. Chattopadhyay, and J. Terry, J. Phys. Chem. B 107(13), 2966-2970 (2003).
【89】S. F. Lai, W. C. Chen, C. L. Wang, H. H. Chen, S. T. Chen, C. C. Chien, Y. Y. Chen, W. T. Hung, X. Cai, E.Li, I. Kempson, Y. Hwu, C. S. Yang, E. Tok, H. R.
Tan, M. Lin and G. Margaritondo, Langmuir, (2011).(In press)
【90】C. L. Wang, B. J. Hsao, S. F. Lai, W. C. Chen, H. H. Chen, Y. Y. Chen, C. C. Chien, X. Cai1, I. Kempson, Y. Hwu, and G. Margaritondo, Nanotechnology 22,
065605 (2011).
【91】G. Mie, Ann. Phys. 25, 377 (1908).
【92】Angshuman Pal, Sunil Shah, and Surekha Devi, Coll. Surf. A-Phys. Eng.Asp. 302, 51-57 (2007).
【93】Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, J. X. Wang, L. Song, L. F. Liu,W. Y. Zhou, G. Wang, C. Y. Wang, and S. S. Xie, J. Phys.
Chem. B 108(34), 12877-12881 (2004).
【94】M. Jin, X. Zhang, S. Nishimoto, Z. Liu, D. A Tryk, T. Murakami, and A. Fujishima, Nanotechnology 18(7), 075605 (2007).
【95】A. N. Grace, K. Pandian, Colloids and Surfaces A: Physicochem. Eng. Aspects 290, 138-142 (2006).
【96】N. F´elidj, J. Aubard, G. L´evi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 65(7), 075419 (2002).
【97】P. R. Selvin, nature structural biology 7(9), (2000).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文