跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.96) 您好!臺灣時間:2026/01/23 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳自強
研究生(外文):Tzu-CHiang Chen
論文名稱:3-芳香基喹啉查耳酮之衍生物的合成與抗增生活性之研究
論文名稱(外文):Synthesis and Antiproliferative Evaluation of 3-Arylquinolinylchalcone Derivatives
指導教授:曾誠齊
指導教授(外文):Cherng-Chyi Tzeng
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫藥暨應用化學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:151
中文關鍵詞:查耳酮
外文關鍵詞:quinolinylchalcone
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
天然物查耳酮文獻中顯示具有多種生物活性。由於查耳酮在植物中容易取得和合成,所以查耳酮衍生物的研究備受關注。另一方面,喹啉為骨架的衍生物,多篇文獻中也顯示具有抗增生活性。本論文主要探討合成喹啉查爾酮的衍生物與抗增生活性的評估。其中以3-(4-取代苯基)喹啉-2-醛與不同取代的芳香酮進行醛酮縮合進而合成出3-苯基取代喹啉查爾酮之衍生物時具有不錯的產率。這些新合成的化合物,針對肺癌細胞(A549、H1299和H460),乳腺癌細胞(MCF-7、MB-231和SKBR-3),與正常細胞(MRC-5與M10)進行抗增生活性評估。其中(E)-1-(5-bromothiophen-2-yl)-3-(3-(4-methoxyphenyl)quinolin-2-yl)prop-2-en-1-one (19c)對H1299和SKBR-3的IC50值分別為0.71和0.52μM,而對照藥物topotecan(其IC50值> 10.0μM在兩株癌細胞中)。更值得注意的是化合物19c顯示對MB-231乳癌細胞的選擇性最高,IC50值小於0.10μM,對正常細胞M10則無細胞毒IC50值9.38μM。

Chalcones are natural products which have displayed a wide variety of biological activities. Due to their abundance in plants and ease of synthesis, studies on chalcone derivatives have attracted much attention. On the other hand, quinoline skeleton is one of the key building elements for a large number of biologically active compounds. Therefore, the present thesis describes the preparation of certain chalcone derivatives in which an aryl moiety was replaced with quinoline nucleus. These newly synthesized 3-phenylquinolinylchalcone derivatives were evaluated in vitro against a panel of six cancer cell lines including three non-small cell lung cancer cells (H1299, H460, and A549), three breast cancer cells (MCF-7, MDA-MB-231, and SKBR-3), and a normal mammary epithelial cell (M10). Among them, (E)-1-(5-bromothiophen-2-yl)-3-(3-(4-methoxyphenyl
)quinolin-2-yl)prop-2-en- 1-one (19c) was active against the growth of H1299 and SKBR-3 with IC50 values of 0.71 and 0.52μM respectively which was more active than the positive topotecan (IC50 values of > 10.0μM in each case). Compound 19c was also active against the growth of MDA-MB-231 with an IC50 value of less than 0.10μM and was not cytotoxic to the normal mammary epithelial cell (M10) with an IC50 value of 9.38μM.


中文摘要----------------------------------------------------------------------------------1
英文摘要----------------------------------------------------------------------------------2
壹、序論------------------------------------------------------------------------------------3
貳、研究動機----------------------------------------------------------------------------14
参、研究方法----------------------------------------------------------------------------29
肆、合成結果與討論-------------------------------------------------------------------31
伍、抗癌活性與結果討論-------------------------------------------------------------42
陸、結論----------------------------------------------------------------------------------52
柒、實驗部份----------------------------------------------------------------------------55
一、溶劑及處理過程-----------------------------------------------------------55
二、儀器、試劑製備與來源-----------------------------------------------------55
三、試藥---------------------------------------------------------------------------56
四、各化合物製備過程----------------------------------------------------------59
捌、參考文獻---------------------------------------------------------------------------130
附錄-------------------------------------------------------------------------------------139


1.Anand, P.; Kunnumakara, A. B.; Sundaram, C.; Harikumar, K. B.; Tharakan, S. T.; Lai, O. S.; Sung, B.; Aggarwal, B. B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008, 25, 2097–2116.
2.Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-K-endall, D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia. 1989, 45, 209–211.
3.(a) Pettit, G. R.; Temple, C. Jr.; Narayanan, V. L.; Varma, R.; Simpson, M. J.; Boyd, M. R.; Rener, G. A.; Bansal, N. Antineoplastic agents 322. synthesis of combretastatin A-4 prodrugs. Anti-cancer drug des. 1995, 10, 299–309. (b) Pettit, G. R.; Rhodes, M. R. Antineoplastic agents 389. new syntheses of the combretastatin A-4 prodrug. Anti-cancer drug des. 1998, 13, 183–191.
4.Hirota, M.; Fujiwara, T.; Mineshita, S.; Sugiyama, H.; Teraoka, H., Distamycin A enhances the cytotoxicity of duocarmycin A and suppresses duocarmycin A-induced apoptosis in human lung carcinoma cells. Int. J. Biochem. Cell Biol. 2007, 39, 988-996.
5.Wang, Z.; Zimmer, C.; Lown, J. W.; Knippers, R. Effects of bifunctional netropsin-related minor groove-binding ligands on mammalian type I DNA topoisomerase. Biochem. Pharmacol. 1997, 53, 309-316.
6.Riou, J-F.; Grondard, L.; Naudin, A.; Bailly, C. Effects of two distamycin-ellipticine hybrid molecules on topoisomerase I and II mediated DNA cleavage: relation to cytotoxicity. Biochem. Pharmacol. 1995, 50, 424-428.
7.Brana, M. F.; Cacho, M.; Gradillas, A.; Pascual-Teresa, B. d.; Ramos, A., Intercalators as anticancer drugs. Curr. Pharm. Des. 2001, 7, 1745-1780.
8.Tuteja, N.; Phan, T-N.; Tuteja, R.; Ochem, A.; Falaschi, A. Inhibition of DNA unwinding and ATPase activities of human DNA helicase II by chemotherapeutic agents. Biochem. Bioph. Res. Co. 1997, 236, 636-640.
9.Galloway, S. M.; Miller, J. E.; Armstrong, M. J.; Bean, C. L.; Skopek, T. R.; Nichols, W. W. DNA synthesis inhibition as an indirect mechanism of chromosome aberrations: comparison of DNA-reactive and non-DNA-reactive clastogens. Mutation Res. 1998, 400, 169-186.
10.Basak, J. On the nature of the adaptive response induced by mitomycin c in Vibrio choleraeOGAWA 154 Cells. Biochem. Bioph. Res. Co. 1996, 220, 509-514.
11.Reddy, B. S. P.; Sondhi, S. M.; Lown, J. W. Synthetic DNA minor groove-binding drugs. Pharmacol. Therapeut. 1999, 84, 1–111.
12.Buschini, A.; Alessandrini, A.; Martino, A.; Pasini, L.; Rizzoli, V.; Carlo-Stella, C.; Poli, P.; Rossi, C., Bleomycin genotoxicity and amifostine (WR-2721) cell protection in normal leukocytes vs. K562 tumoral cells. Biochem. Pharmacol. 2002, 63, 967-975.
13.Lefterov, I. M.; Koldamova, R. P.; King, J.; Lazo, J. S. The C-terminus of human bleomycin hydrolase is required for protection against bleomycin-induced chromosomal damage. Mutation Res. 1998, 421, 1–7.
14.Lothstein, L.; Israel, M.; Sweatman T. W. Anthracycline drug targeting: cytoplasmic versus nuclear–a fork in the road. Drug Resist. Update. 2001, 4, 169–177.
15.Smorenburg, C. H.; Sparreboom, A.; Bontenbal, M.; Verweij, J. Combination chemotherapy of the taxanes and antimetabolites: its use and limitations. Eur. J. Cancer. 2001, 37, 2310-2323.
16.Moscow J. A.; Johnston P. G.; Cole, D.; Poplack, D. G.; Cowan, K. H. Characterization of cross-resistance to methotrexate in a human breast cancer cell line selected for resistance to melphalan. Biochem. Pharmacol. 1995, 49, 1069–1078.
17.Hande, K. R. Etoposide: four decades of development of topoisomerase II inhibitor. Eur. J. Cancer. 1998, 34, 1514-1521.
18.Kluza, J.; Lansiaux, A.; Wattez, N.; Mahieu, C.; Osheroff, N.; Bailly, C. Apoptotic response of HL-60 human leukemia cells to the antitumor drug TAS-103. Cancer Res. 2000, 60, 4077-4084.
19.Stone, A. A.; Chambers, T. C. Microtubule inhibitors elicit differential effects on MAP kinase (JNK, ERK, and p38) signaling pathways in human KB-3 carcinoma cells. Exp. Cell Res. 2000, 254, 110-119.
20.Jordan, M. A.; Thowar, D.; Wilson, L. Mechanism of inhibition of cell proliferation by vinca alkaloids. Cancer Res. 1991, 51, 2212–2222.
21.Seidman, R.; Gitelman, I.; Sagi, O.; Horwitz, S. B.; Wolfson, M. The role of ERK 1/2 and p38 MAP-kinase pathways in taxol-induced apoptosis in human ovarian carcinoma cells. Exp. Cell Res. 2001, 268, 84–92.
22.Wittliff, J. L. Steroid-hormone receptors in breast cancer. Cancer. 1984, 53, 630–643.
23.Gottardis, M. M.; Jordan, V. C. Antitumor actions of keoxifene and tamoxifen in the N-nitrosomethylurea-induced rat mammary carcinoma model. Cancer Res. 1987, 47, 4020–4024.
24.Teicher, B. A. Molecular targets and cancer therapeutics: discovery, development and clinical validation. Drug Resist. Update. 2000, 3, 67-73.
25.Alexander, H.; Hopfner, M.; Baradari, V.; Schuppan, D.; Scherubl, H. Sorafenib alone or as combination therapy for growth control of cholangiocarcinoma. Biochem. Pharmacol. 2007, 73, 1308-1317.
26.Johnson, D. H. Gefitinib (Iressa) trials in non-small cell lung cancer. Lung cancer . 2003, 41, 23-28.
27.Macquart-Moulin, G.; Viens, P.; Palangie, T.; Bouscary, M. L.; Delozier, T.; Roche, H.; Janvier, M.; Fabbro, M.; Moatti, J. P. High-dose sequential chemotherapy with recombinant granulocyte colony-stimulating factor and repeated stem-cell support for inflammatory breast cancer patients: does impact on quality of life jeopardize feasibility and acceptability of treatment J. Clin. Oncol. 2000, 18, 754–764.
28.Agero, A. L. C.; Dusza, S. W.; Benvenuto-Andrade, C.; Busam, K. J.; Myskowski, P.; Halpern, A. C. Dermatologic side effects associated with the epidermal growth factor receptor inhibitors. J. Am. Acad. Dermatol. 2006, 55, 657–670.
29.Adams, V. R.; Leggas, M. Sunitinib malate for the treatment of metastatic renal cell carcinoma and gastrointestinal stromal tumors. Clin. Ther. 2007, 29, 1338–1353.
30.Ismael, G. F. V.; Rosa, D. D.; Mano, M. S.; Awada, A. Novel cytotoxic drugs: old challenges, new solutions. Cancer Treat. Rev. 2008, 34, 81–91.
31.Dominguez, J. N.; Charris, J. E.; Lobo, G.; Dominguez, N. G. de.; Moreno, M. M.; Riggione, F.; Sanchez, E; Olson, J.; Rosenthal, P.J. Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. Eur. J. Med. Chen. 2001, 36, 555-560
32.Liu, M.; Wilairat, P.; Croft, S. L.; Tan, A. L. C.; Go, M. L. Structure-activity relationships of antileishmanial and antimalarial chalcones. Bioorg. Med. Chem. 2003, 11, 2729-2738.
33.Hsieh, H. K.; Lee, T. H.; Wang, J. P.; Wang J. J.; Lin, C. N. Synthesis anti-inflammatory defect of chalcones and related compounds. Pharm. Res. 1998, 15, 39.
34.Azad, M.; Munawar, M. A.; Siddiqui, H. L. Antimicrobial activity and synthesis of quinoline-based chalcones. J. Applied Sci. 2007, 7, 2485-2489.
35.Dave, S. S.;Ghatole, A. M.;Rahatgaonkar, A. M.; Chorghade, M. S.; Chauhan, P. M. S.; Srivastava, K. Experimental and computational evaluation of new quinolinyl chalcones as potent antiplasmodial agents. Ind. J. Chem. 2009, 48, 1780-1793.
36.Gupta, L.; Karthikeyan, C.;Trivedi, P. Synthesis and characterization of com quinolinyl chalcones as anti-HIV agents. Inter. J. Pharm. Applied Sci. 2010, 1, 109-113.
37.Azad, M.; Munwar, M.A; Athar, M. Synthetic and antibacterial studies of quinolinylchalcones. J. Applied Sci.2007, 7, 1620-1625.
38.Keda, S.;Kimaura, U.; Ashizawa, T.; Gomi, K.; Saito, H. Preparation of hetreocyclylpropenones as antitumor agents. Patent NO.JP08277242, October 1996.
39.Nam, N. H.; Kim, Y.; You, J.; Hong, D. H.; Kim, H. M.; Ahn, B. Z. Cytotoxic 2’,5’-dihydroxychalcones with unexpected antiangiogenic activity. Eur. J.Med. Chem. 2003, 38, 179-187.
40.Nam, N.H.; Hong, D.H.; You, Y.J.; Yong Kim, Y.; Bang, S. C.; Kim, H. M.; Ahn, B. Z. Synthesis and cytotoxicity of of 2,5-dihydroxychalcones and related compounds. Arch Pharm Res, 2004, 27, 581-588.
41.Ducki,S.; Forrest, R.; Hadfield, J. A.; Kendall, A.; Nicholas J. Lawrence, N. J.; McGown, A. T.; Renniso, T. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. . Bioorg. Med. Chem. Lett. 1998 , 8,1051-1056.
42.Tseng, C. M.; Chen, Y. L; Chung, K. Y.; Wang, C. H.; Peng, S. I.; Cheng, C. M.; Tzeng, C. C. Synthesis and antiproliferative evaluation of 2,3-diarylquinoline dericatives. Org. Biomol. Chem. 2011, 9 , 3205-3216.
43.Rajendra P.T.;Amanda R. H.; Tracy E. S.; Ernest H.; Mary L.T.;Kevin G. P.Application of the McMurry coupling reaction in the synthesis of tri- and tetra-arylethylene analogues as potential cancer chemotherapeutic agents. Bioorg. Med. Chem. Lett. 2009,17 ,6993-7001.
44.Osborne, C. K.et.al. Tamoxifen in the Treatment of Breast Cancer. N. Engl. J. Med. 1998, 339, 1609-1618.
45.Timothy, A. G.; Lewis, D. P.; James, P. S.; Harlan, W. C. Synthesis and pharmacology of conformation restricted raloxifene analogues:highly potent selective estrogen receptor modulators. J. Med. Chem. 1998, 41, 1272-1283.
46..Flynn, B. L.; Gill, G.S.; Grobelny, D. W.; Chaplin, J. H.; Paul, D.;Leske, A.F.; Lavranos, T. C.; Chalmers, D. K.; Charman, S. A. Discovery of 7-hydroxy-6-methoxy- 2-methyl-3-(3,4,5-trimethoxybe
nzoyl)benzo[b]furan (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties. . J. Med. Chem. 2011, 54, 6014–6027.
47.Nien, C.Y,; Chen, Y.C.; Kuo, C. C.; Hsieh, H. P.; Chang, C.Y.;Wu, J. S.;Wu, S. Y.; Liou, J. P.; Jang-Yang Chang, J. Y.5-Amino-2-Aroylquin
olines as Highly Potent Tubulin Polymerization Inhibitors. J. Med. Chem. 2010, 53, 2309-2313.
48..Tseng, C. H.; Chen, Y. L.; Chung, K. Y.; Cheng, C. M.; Wang, C. H.; Tzeng, C. C. Synthesis and antiproliferative evaluation of 6-arylindeno[1,2-c]quinoline derivatives. Bioorg. Med. Chem. 2009, 17, 7465-7476.
49.Palmer, M. H.; Mclntyre, P. S. The pfitzinger reaction with unsymmetrical ketones.J. Chem. Soc. (B), 1969, 539-543.
50.Lutz R. E.; Codington, J. F.; Leake, N. H. 6- and 7-chloro-α- (dialkyaminomethoxy)-4-quinolinemethanols. J. Am. Chem. Soc.1947, 69, 1260-1263.
51.Moffat, D.;Patel, S.; Day, f.;Belfirld, A.; Donald, A.; Rowlands,M.;Wibawa, J.;Brotherton, D.; Stimson, L.;Clark, V.; Owen, J.; Bawden, L.; Box, G.; Bone, E.; Mortenson, P.; Hardcastle, A.; Meurs, S. van.; Eccles, S.;Raynaud, F.; Aherne, W. Discovery of 2-(6-{[(6-fluoroquinolin-2-yl)methyl]amino}bicycle[3.1.0]hex-3-yl)-N- hydroxypyrimidine-5-carboxamide (CHR-3996), a class I selective orally active histone deacetylase inhibitor. J. Med. Chem. 2010, 53, 8663-8678
52.LeBlanc, R.; Dickson, J.; Brown, T.; Stewart, M.; Pati, H. N.; Derveer, D. V.; Arman, H.; Harris, J.; Pennington,W.; Holt, H. L.; Lee, M. Synthesis and cytotoxicity of epoxide and pyrazole analogs of the combretastatins. Bioorg. Med. Chem .2005. 13 6025–6034.
53.Ajaya, A.; Singhb,V.; Singhc, S; Pandeyd, S. K.; Gunjand, S.;, Dubeye, D.; Sinhac, S.; Singhb, B. N.; Chaturvedic, V.; Tripathid, R.;,Ramchandrane, R.;. Tripathia, R. P. Synthesis and bio-evaluation of alkylaminoaryl phenyl cyclopropyl methanones as antitubercular and antimalarial agents. Bioorg Med Chem, 2010, 18, 8289-8301.
54.Edwars, M. L.; Stemerick, D. M.; Sunkara, P S. Chalcones: a new class of antimitotic agents. J.Med. Chem.1990,33,1948-1954.
55.Tseng, C.H.; Yang, C. Y.; Lu, P.J.; Chen.;Chen, H. L.; Li, H. Y. Chuang, Y.C.; Yang, C. N.; Chen, Y. L. Synthesis and antiproliferative evaluation of certain Indeno[1,2-c]quinoline derivatives. part 2. J. Med. Chem.2010, 53, 6164-6179.
56.Lee,J.; Kim, S. J.; Choi, H.; Kim, Y. H.; Lim, T.; Hyun-mo Yang, H.; Lee, C. S.; Kang, H. R.;Ahn, S. K.;Moon, S. K.; Kim, D. H. Identification of CKD-516: a potent tubulin polymerization inhibitor with marked antitumor activity against murine and human solid tumors. J. Med. Chem. 2010, 53, 6337–6354.
57.Hiltensperger, G.; Jones .N.G.; Niedermeier, S.; Stich, A.; Kaiser, M.; Jung,J.; Puhl, S.; Damme, A.; Braunschweig, H.,; Meinel, L.; Engstler, M.; Holzgrabe, U. Synthesis and structure−activity relationships of new quinolone-type Molecules against trypanosome brucei. J. Med. Chem.2012, 55, 2538-2548.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top