跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐瑞鴻
研究生(外文):Jui-Hong Hsu
論文名稱:全光式邏輯閘與分波多工在二維光子晶體之研究
論文名稱(外文):The Study of All-Optical Logic Gates and Wavelength Division Multiplexers based on Two-Dimension Photonic Crystal
指導教授:吳曜東吳曜東引用關係
指導教授(外文):Yaw-Dong Wu
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子與資訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:111
中文關鍵詞:光子晶體分波多工邏輯元件
外文關鍵詞:photonic crystalwavelength divisionlogic gate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:308
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本論文是討論光子晶體於光學元件上的應用。光子晶體是指由二種或二種以上不同介質材料呈週期性排列的結構。在此週期性排列的介電材料會造成某部分頻率的電磁波無法在晶體內傳遞,此區域稱為光子能隙。由於此項特性,光子晶體十分適合應用於光學的各方面領域。吾人將利用此現象去設計光子晶體分光器,利用時域有限差分法及平面波展開法去分析光子晶體分波與全光式邏輯閘結構。
首先,吾人藉由利用干涉儀來達到相位差的特性,控制兩輸入之相位差來達到一個全光式邏輯閘的設計。並分析改變分光結構之晶格半徑大小,提出可控制1×3均勻分光元件。接著,再進一步討論光子晶體共振腔的現象,利用結構特性不同來達到分波之效果。
In this thesis, it discussed the application of wavelength division multiplexers and all-optical logic gates of flip-flop in the photonic crystals. A photonic crystal is a revolutionary class of artificially periodic electromagnetic media, in which a fundamentally new electromagnetic phenomenon can be achieved. A photonic band gap defines a range of frequencies for which light is forbidden to exist inside the crystal. In such beam-splitter, the optical field is confined, horizontally, by a photonic band gap (PBG) provided by the photonic crystal. By using plane-wave expansion method and finite-difference time-domain method to analyzed photonic crystal beam-splitter structure.
Firstly, we cascade multimode interference and Mach-Zehnder interference waveguides to design all-optical logic devices. And then, using the two waveguides’ effect by varying the size of the airholes of the splitting structure, we present that the bending and controllable splitting of self-collimated beams can be useful in one-to-three beam splitter based on photonic crystals. Then, we have proposed an X structure of wavelength division multiplexer. It can be used in Fiber to the home communication system. Final, the resonator device of 5 x 5 super cell was proposed. It can apply to CWDM communication system which was defined by ITU-T Recommendation G.694.2. The advantages were in terms of compactness, easy manufacturing, simple structure, and high drop filter efficiency. In addition, we proposed a seven-channel visible wavelength division multiplexing system for the rainbow, it could be use to substitute for the superprism.
Chapter 1 Introduction 3
1.1 General Reviews of Photonic Crystals 3
1.2 Photonic crystal components 5
1.2.1 Defects 6
1.2.2 Photonic Crystal Waveguides 6
1.3 Applications of Photonic Crystals 7
1.3.1 FTTH (Fiber to the Home) 7
1.3.2 CWDM (Coarse Wavelength Division Multiplexing) and DWDM (Dense Wavelength Division Multiplexing) 8
1.4 Organization of the Thesis 10
Chapter 2 Basic Theory and Simulation Methods 16
2.1 Introduction 16
2.2 Plane Wave Expansion Method (PWE) 17
2.3 Finite-Difference Time-Domain Method (FDTD) 21
2.4 The Multimode Interference Principle 26
Chapter 3 The All-Optical Logic Gate based on Cascade MZI and MMI Photonic Crystal Waveguides 39
3.1 Introduction 39
3.2 Analysis 41
3.3 Numerical Results 42
3.4 Summary 43
Chapter 4 The All-Optical Flip-Flop based on Multimode Interference Waveguid 51
4.1 Introduction 51
4.2 Numerical Results and Analysis 54
4.3 Summary 55
Chapter 5 Novel Triplexer and Power Splitter with Low Crosstalk based on Photonic Crystal Waveguide 64
5.1 Introduction 64
5.2 Numerical Results and Analysis 65
5.2.1 Broadband waveguide intersection with low-crosstalk and 66
5.2.2 Novel triplexer with the X structure 67
5.4 Summary 69
Chapter 6 Wavelength Division Multiplexers based on Two-Dimensional Photonic Crystal with Multi-Channel Drop Filters 84
6.1 Introduction 84
6.2 Numerical Results and Analysis 86
6.2.1 CWDM system based on eight-channel drop filters 86
6.2.2 Seven visible lights of the rainbow based on 2D PCs 88
6.3 Summary 89
Chapter 7 Conclusion and Suggestions for Future Researches 97
7.1 Conclusion 97
7.2 Suggestions for future researches 99
References 100
[1]E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics electrons,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[2]S. John, “Strong localization of phonics in certain disordered dielectric superlattice,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[3]T. Bada, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electronics 38, 743 (2002).
[4]N. Moll, G.L. Bona, “Comparison of three-dimensional photonic slab waveguides with two-dimensional photonic crystal waveguides: Efficient butt coupling into these photonic crystal waveguides,” J. Appl. Phys. 93, 4986 (2003).
[5]M. Loncar, J. Vuckovic, A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt. 18, 1362 (2001).
[6]J. Moosburger, M. Kamp, A. Forchel, U. Oesterle, and R. Houdré, “Transmission spectroscopy of photonic crystal based waveguides with resonant cavities,” J. Appl.Phys. 92, 4791 (2002).
[7]A. Scherer, O. Painter, J. vuckovic, M. Loncar, T. Yoshie, “Photonic Crystals for Confining, Guiding, and Emitting Light,” IEEE trans Nanotechnology 1, 4 (2002).
[8]J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997).
[9]S. Noda, A Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608 (2002).
[10]M. Koshiba, “Wavelength Division Multiplexing and Demultiplexing With Photonic Crystal Waveguide Couplers,” IEEE J. Lightwave. Tech. 19, 733 (2001).
[11]M. Bayindir, E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express 10, 1279 (2002).
[12]J. Sharee, M. Nab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927-2939 (2003).
[13]K. Srinivasan, O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670-684 (2002).
[14]T. Yoshie, J. Vučković, “High quality two-dimensional photonic crystal slab cavities,” Axel Scherer, H. Chen, Dennis Deppe, Appl. Phys. Lett. 79, 4289-4291 (2001).
[15]T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol. 197, 688-702 (2003).
[16]R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753-4755 (1994).
[17]S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000).
[18]G. P. Nordin, S. Kim, J.Cai, J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express 10, 1334 (2002).
[19]T. Sondergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688 (2000).
[20]S. Boscolo, M. Midrio, “Y junctions in photonic crystal channel waveguides: high transmission and impendence matching,” Opt. Lett. 27, 1001 (2002).
[21]M. Bayindir, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902 (2000).
[22]S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23, 1855 (1998).
[23]A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator opticalwaveguide:a proposal and analysis,” Opt. Lett. 24, 711 (1999).
[24]S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003).
[25]M. Bayindir, B. Temelkuran, and E. Ozbay, “Freezing by Heating in a Driven Mesoscopic System,” Phys. Rev. Lett. 84, 2140 (2000).
[26]C. Martijn de Sterke, “Superstructure gratings in the tight-binding approximation,” Phys. Rev. E 57, 3502 (1998).
[27]N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127 (1998).
[28]E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-Binding Parametrization for Photonic Band Gap Materials,” Phys. Rev. Lett. 81, 1405 (1998).
[29]E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of Localized Coupled-Cavity Modes in Two-Dimensional Photonic Bandgap Structures,” IEEE J. Quantum Electronics 38, 7 (2002).
[30]M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 24 (2000).
[31]P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett. 21, 2017–2019 (1996).
[32]A. Martinez, J. Marti, J. Bravo-Abad, and J. Sanchez-Dehesa, “Wavelength Demultiplexing Structure Based on Coupled-Cavity Waveguides in Photonic Crystals,” Fiber and Integrated Opt. 22, 151–160 (2003).
[33]F. Nedvidek, M. Nebeling and D. Mailloux, “Deploying CWDM to Overcome Bandwidth Limitations of FTTH Access Networks,” 2006 FTTH Conference & Expo. (2006).
[34]C. Bouchat, C. Dessauvages, F. Fredricx, C. Hardalov, R. Schoop, and P. Vetter, “WDM-upgraded PONs for FTTH and FTTBusiness.,” (2002).
[35]K. M. Ho, C. T. Chan, and C. M. Soukouils, “Existence of a photonic gap in periodic dielectric structures,” Phy. Rev. Lett. 65, 3152-3155 (1990).
[36]K. M. Leung, and Y. F. Liu, “Photon band structures: The plane-wave method,” Phys. Rev. B 41, 10188-10190 (1990).
[37]Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett. 65, 2650-2653 (1990).
[38]B. C. Gupta, C. H. Kuo, and Z. Ye, “Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems,” Phys. Rev. E. 69, 06615-1-6 (2004).
[39]P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306-322 (1995).
[40]K. S. Kunz and R. J. Luebbers, “The finite difference time domain method for electromagnetics,” Boca Raton FL: CRC Press (1993).
[41]G. S. Smith, M. P. Kesier, J. G. Maloney, and B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave and Optical Technology Lett. 11, 169-174 (1996).
[42]J. G. Maloney, M. P. Kesier, B. L. Shirely, and G. S. Smith, “A simpled description for waveguiding in photonic bandgap materials,” Microwave and Optical Technology Lett. 14, 261-266 (1997).
[43]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenna Propagat. 14, 302-307 (1966).
[44]J. Adhidjaja and G. Horhmann, “A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body,” Geophysics J. Int. 98, 233 (1989).
[45]M. Piket-May and A. Taflove, “Electrodynamics of visible-light interactions with the vertebrate retinal rod,” Opt. Lett. 18, 568-570 (1993).
[46]M. Celuch-Marcysiak and W. Gwarek, “Higher order modeling of media interfaces for enhanced FDTD analysis of microwave circuits,” in 24th European Microwave Conference 24, 1530 (1994).
[47]L. B. Soldano, and E. C. M. Pennings, Member, IEEE,“Optical multi-mode interference devices based in self-imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995).
[48]R. Ulrich, and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Leet. 27, 583-592 (1978).
[49]O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Amer. 63, 416-418 (1973).
[50]R. Ulrich, and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337-339 (1975).
[51]R. Ulrich, and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Amer. 68, 583-592 (1978).
[52]L. Soldano, and E. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol. 13, 615-627 (1995).
[53]L. B. Soldano, B. Veerinan, K. Smit, H. Verbeek, H. Dubost, and E. C. Pennings, “Planar monomode optical couplers based on multimode interference effects” J. Lightwave Technol. 10, 634-636 (1992).
[54]R. Ulrich, and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337-339 (1975).
[55]D. C. Chang, and E. F. Kuest, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” IEEE Trans. Microwave Theory technol. 29, 923-933 (1981).
[56]A. Martinez, A. Griol, P. Sanchis, and J. Marti, “Mach–Zehnder interferometer employing coupled-resonator optical waveguides,” Opt. Lett., Vol.28, pp.405-407, 2003.
[57]T. P. White, C. Martijn de Sterke, R. C. McPhedran, and T. Huang, “Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers,” Opt. Express, Vol.12, pp.3035-3045, 2004.
[58]A. Martinez, F. Cuesta, A. Griol, D. Mira, and J. Garcia, “Photonic-crystal 180° power splitter based on coupled-cavity waveguides,” Appl. Phys. Lett., Vol.83, pp.3033-3035, 2003.
[59]M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett., Vol.77, pp.3902-3904, 2000.
[60]S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, “Design of impurity band-based photonic crystal waveguides and delay lines for ultrashort optical pulses,” J. Appl. Phys., Vol.90, pp.4321-4327, 2001.
[61]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics Electronics,” Phys. Rev. Lett., Vol.58, pp.2059-2062, 1987.
[62]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., Vol.58, pp.2486-2489, 1987.
[63]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic Crystals: Molding the flow of light”, Princeton University Press, New York, 1995.
[64]S. Noda, A Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, Vol.407, pp.608-610, 2000.
[65]C. Jin, S. Fan, S. Han, and D. Zhang, “Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration,” IEEE J. Quantum Electron., Vol.39, pp.160-165, 2003.
[66]M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, ”Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express, Vol.12, pp.1551-1561, 2004.
[67]M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express, Vol.10, pp.1279-1284, 2002.
[68]A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett., vol. 80, pp.1698-1700, 2002.
[69]A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett., Vol.80, pp.547-549, 2002.
[70]A. Yariv, Y. Xu, R. K. Lee, and A. scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett., Vol.24, pp.711-713, 1999.
[71]S. Olivier, C. Smith, M. Rattier, H. Benisty, and C. Weisbuch, T. Krauss, R. Houdré and U. Oesterlé, “Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett., Vol.26, pp.1019-1021, 2001.
[72]W. J. Kim, W. Kuang, and J. D. O’Brien, “Dispersion characteristics of photonic crystal coupled resonator optical waveguides,” Opt. Lett., Vol.11, pp.3431-3437, 2003.
[73]S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999).
[74]S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608-610 (2000).
[75]S. Kim, I. Park, and H. Lim, “Proposal for ideal 3-dB splitters–combiners in photonic crystals,” Opt. Lett., Vol.30, pp.257-259, 2005.
[76]C. E. Saavedra, and Y. Zheng, “Ring-Hybrid Microwave Voltage-Variable Attenuator Using HFET Transistors,” IEEE Trans. Micro. Theory Tech., Vol.53, pp.2430-2434, 2005.
[77]H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y.Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot alloptical switch for future photonic networks,” Opt. Express, Vol.12, pp.6606-6614, 2004.
[78]A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-port channel drop filter in two dimensional photonic crystal on silicon-on-isulator substrate,” Opt. Express, Vol.14, pp.12394-12400, 2006.
[79]T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-Division Demultiplexing Using Photonic crystal waveguides,” IEEE Photonic Technol. Lett., Vol.18, pp.226-228, 2006.
[80]P. Halevi, A. A. Krokhin, J. Arriaga, “Photonic crystals as optical components,”Appl. Phys. Lett. 75, 2725-2727 (1999).
[81]C. C. Chen, H. D. Chien, P. G. Luan, “Photonic Crystal Beam Splitters,” Appl. Opt. 43, 6188-6190 (2004).
[82]A. Lupu, E. Cassan, S. Laval, L. E1 Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Opt. Express 12, 5690-5696 (2004).
[83]K. B. Chung, and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549-1551 (2002).
[84]M. Yanagisawa, Y. Inoue, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, and T. Sugie, “Low-loss and compact TFF-embedded silica-waveguide WDM filter for video distribution services in FTTH systems,” in Proc. OFC 2004, (2004).
[85]X. Li, G.-R. Zhou, N.-N. Feng, and W. P. Huang, “A novel planar waveguide wavelength demultiplexer design for integrated optical triplexer transceiver,” IEEE Photon. Technol. Lett., vol. 17, 1214–1216, (2005)
[86]S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination ofcross talk in waveguide intersections,” Opt. Lett. 23, 1855-1857 (1998).
[87]S. Lan and H. Ishikawa, “Broadband waveguide intersections with low cross talk in photonic crystal circuits,” Opt. Lett. 27, 1567-1569 (2002).
[88]Y.-G. Roh, S. Yoon, H. Jeon S.-H. Han , and Q-H. Park, “Experimental verification of cross talk reduction in photonic crystal waveguide crossings,” Appl. Phys. Lett. 85, 3351-3353 (2004).
[89]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic Crystals, Molding the Flow of Light”, Princeton University Press, Princeton, NJ. (1995).
[90]R. M. Jenkins, R. W. J. Deveraux, and J. M. Heaton, “A novel waveguide Mach-Zehnder interferometer based on multimode interference phenomena,” Opt. Commun. 110, 410-424 (1994).
[91]E. C. M. Pennings, R. J. Deri, A. Scherer. R. Bhat, T. R. Hayes, N. C. Andreadakis, M.K. Smit, and R. J. Hawkins, “Ultra-compact, low-loss directional coupler structures on InP for monolithic integration,” Proc. Integr. Phot. Res. (IPRC). 31, 401-405 (1991).
[92]M. Bachmann, P. A. Besses, and H. Melchior, “General self-imaging properties in N´N multi-mode interference couplers including phase relations,” Appl. Opt. 33, 3905-3911 (1994).
[93]M. R. Paiam, C. F. Janz, R. I. MacDonald and J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photo. Technol. Lett. 7, 1180-1182 (1995).
[94]L. H. Spiekman, Y. S. Oei, E. G. Metaal, F. H. Groen, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 7, 874-880 (1994).
[95]R. M. Jenkins, R. W. J. Deveraux, and J. M. Heaton, “Waveguide beam spltters and recombiners based in mulitimode propagation phenomena,” Opt. Lett. 17, 991-993 (1992).
[96]R. Ulrich, “Image formation by phase condences in optical waveguides,” Opt. Commun. 13, 259-263 (1975).
[97]J. M. Heaton, R. M. Jenkins, and D. R. Wight, “A novel waveguide Mach-Zehnder interferometer based on multimode interference phenimena,” Opt. Commun. 109, 410-424 (1994).
[98]R. Ulrich, and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Amer. 68, 583-592 (1978).
[99]E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A, Pure Appl. Opt. 1, L10–L13 (1999).
[100]F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004).
[101]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998).
[102]K. Asakawa et al. “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys 8, 208 (2006).
[103]S. D. Smith, “Optical bistability, photonic logic, and optical computation,” Appl. Opt. 25, 1550-1564 (1986).
[104]H. Tsuda and T. Kurokawa, “Construction of an all-optical flip-flop by combination of two optical triodes,” Appl. Phys. Lett. 57, 1724-1726 (1990).
[105]T . Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,'' Appl. Phys. Lett. 87, 151112 (2005).
[106]Y. Watanabe, Y. Sugimoto, N. Ikeda, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, K. Asakawa, “Broadband waveguide intersection with low-crosstalk in two-dimensional photonic crystal circuits by using topology optimization,”Opt. Express 14, 9502-9507 (2006).
[107]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Optics Express 3, 4-11 (1998).
[108]B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Multichannel Add/Drop Filter Based on In-Plane Hetero Photonic Crystals,” J. Lightwave Technology 23, 1449-1455 (2005).
[109]N.-J. Florous, K. Saitoh, and M. Koshiba, “Low-temperature-sensitivity heterostructure photonic-crystal wavelength-selective filter based on ultralow-refractive-index metamaterials,” Appl. Phys. Lett. 88, 121107 (2006).
[110]N.-J. Florous, K. Saitoh, and M. Koshiba, “Three-color photonic crystal demultiplexer based on ultralow-refractive-index metamaterial technology,” Opt. Lett. 30, 2736-2738 (2005)
[111]A. Sharkawy, S. Shi, and D. W. Pratrher, “Multichannel wavelength division multiplexing with photonic crystals,” Applied Optics 40, 2247-2252 (2001).
[112]S. Kim, I. park, H. Lim, and C.-S. Kee, “Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback,” Optics Express 12, 5518-5525 (2004).
[113]H. Ren, C. Jian, W. Hu, M. Gao, J. Gao and J. Wangm, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express 14, 2446-2458 (2006).
[114]C.-W. Kuo, C.-F. Chang, M.-H. Chen, and S.-Y. Chen, “A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures,” Opt. Express 15, 1 (2007).
[115]T. Lang, J.-J. He, S. He, "Cross-oder arrayed waveguide grating design for triplexers in fiber access networks," IEEE Photonics Tech. Lett. 18, 232-234 (2006).
[116]X. Li, G-R Zhou, N-N Feng, W. Huang, "A novel planar waveguide wavelength demultiplexer design for integrated optical triplexer transceiver," IEEE Photonics Tech. Lett. 17, 1214-1216 (2005).
[117]K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys. 32, L1746-L1748 (1993).
[118]Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K. Inoue, "Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slab", J Appi. Phys. 91, 922-929 (2002).
[119]Hitoshi Nakamura, Yoshimasa Sugimoto, Kyozo Kanamoto, Naoki Ikeda, Yu Tanaka, Yusui Nakamura, Shunsuke Ohkouchi, Yoshinori Watanabe, Kuon Inoue, Hiroshi Ishikawa, and K. Asakawa, "Ultra-Fast Photonic Crystal/Quantum Dot All-Optical Switch for Future Photonic Network," Opt. Express 12, 6606-6614 (2004).
[120]K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, 0. Sigmund, P. I. Borel and R. Baets, "Photonic crystal and quantum dot technologies for all-optical switch and logic device", New J. Phys. 8, 1-26 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top