|
[1]E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics electrons,” Phys. Rev. Lett. 58, 2059-2062 (1987). [2]S. John, “Strong localization of phonics in certain disordered dielectric superlattice,” Phys. Rev. Lett. 58, 2486-2489 (1987). [3]T. Bada, A. Motegi, T. Iwai, N. Fukaya, Y. Watanabe, A. Sakai, “Light Propagation Characteristics of Straight Single-Line-Defect Waveguides in Photonic Crystal Slabs Fabricated Into a Silicon-on-Insulator Substrate,” IEEE J. Quantum Electronics 38, 743 (2002). [4]N. Moll, G.L. Bona, “Comparison of three-dimensional photonic slab waveguides with two-dimensional photonic crystal waveguides: Efficient butt coupling into these photonic crystal waveguides,” J. Appl. Phys. 93, 4986 (2003). [5]M. Loncar, J. Vuckovic, A. Scherer, “Methods for controlling positions of guided modes of photonic-crystal waveguides,” J. Opt. 18, 1362 (2001). [6]J. Moosburger, M. Kamp, A. Forchel, U. Oesterle, and R. Houdré, “Transmission spectroscopy of photonic crystal based waveguides with resonant cavities,” J. Appl.Phys. 92, 4791 (2002). [7]A. Scherer, O. Painter, J. vuckovic, M. Loncar, T. Yoshie, “Photonic Crystals for Confining, Guiding, and Emitting Light,” IEEE trans Nanotechnology 1, 4 (2002). [8]J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390, 143 (1997). [9]S. Noda, A Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608 (2002). [10]M. Koshiba, “Wavelength Division Multiplexing and Demultiplexing With Photonic Crystal Waveguide Couplers,” IEEE J. Lightwave. Tech. 19, 733 (2001). [11]M. Bayindir, E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express 10, 1279 (2002). [12]J. Sharee, M. Nab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927-2939 (2003). [13]K. Srinivasan, O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670-684 (2002). [14]T. Yoshie, J. Vučković, “High quality two-dimensional photonic crystal slab cavities,” Axel Scherer, H. Chen, Dennis Deppe, Appl. Phys. Lett. 79, 4289-4291 (2001). [15]T. F. Krauss, “Planar photonic crystal waveguide devices for integrated optics,” Phys. Stat. Sol. 197, 688-702 (2003). [16]R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753-4755 (1994). [17]S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000). [18]G. P. Nordin, S. Kim, J.Cai, J. Jiang, “Hybrid integration of conventional waveguide and photonic crystal structures,” Opt. Express 10, 1334 (2002). [19]T. Sondergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688 (2000). [20]S. Boscolo, M. Midrio, “Y junctions in photonic crystal channel waveguides: high transmission and impendence matching,” Opt. Lett. 27, 1001 (2002). [21]M. Bayindir, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902 (2000). [22]S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23, 1855 (1998). [23]A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator opticalwaveguide:a proposal and analysis,” Opt. Lett. 24, 711 (1999). [24]S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal circuits,” Phys. Rev. B 67, 115208 (2003). [25]M. Bayindir, B. Temelkuran, and E. Ozbay, “Freezing by Heating in a Driven Mesoscopic System,” Phys. Rev. Lett. 84, 2140 (2000). [26]C. Martijn de Sterke, “Superstructure gratings in the tight-binding approximation,” Phys. Rev. E 57, 3502 (1998). [27]N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127 (1998). [28]E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, “Tight-Binding Parametrization for Photonic Band Gap Materials,” Phys. Rev. Lett. 81, 1405 (1998). [29]E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, “Investigation of Localized Coupled-Cavity Modes in Two-Dimensional Photonic Bandgap Structures,” IEEE J. Quantum Electronics 38, 7 (2002). [30]M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 24 (2000). [31]P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, “Single-mode waveguide microcavity for fast optical switching,” Opt. Lett. 21, 2017–2019 (1996). [32]A. Martinez, J. Marti, J. Bravo-Abad, and J. Sanchez-Dehesa, “Wavelength Demultiplexing Structure Based on Coupled-Cavity Waveguides in Photonic Crystals,” Fiber and Integrated Opt. 22, 151–160 (2003). [33]F. Nedvidek, M. Nebeling and D. Mailloux, “Deploying CWDM to Overcome Bandwidth Limitations of FTTH Access Networks,” 2006 FTTH Conference & Expo. (2006). [34]C. Bouchat, C. Dessauvages, F. Fredricx, C. Hardalov, R. Schoop, and P. Vetter, “WDM-upgraded PONs for FTTH and FTTBusiness.,” (2002). [35]K. M. Ho, C. T. Chan, and C. M. Soukouils, “Existence of a photonic gap in periodic dielectric structures,” Phy. Rev. Lett. 65, 3152-3155 (1990). [36]K. M. Leung, and Y. F. Liu, “Photon band structures: The plane-wave method,” Phys. Rev. B 41, 10188-10190 (1990). [37]Z. Zhang and S. Satpathy, “Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell’s equations,” Phys. Rev. Lett. 65, 2650-2653 (1990). [38]B. C. Gupta, C. H. Kuo, and Z. Ye, “Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems,” Phys. Rev. E. 69, 06615-1-6 (2004). [39]P. M. Bell, J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306-322 (1995). [40]K. S. Kunz and R. J. Luebbers, “The finite difference time domain method for electromagnetics,” Boca Raton FL: CRC Press (1993). [41]G. S. Smith, M. P. Kesier, J. G. Maloney, and B. L. Shirely, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors,” Microwave and Optical Technology Lett. 11, 169-174 (1996). [42]J. G. Maloney, M. P. Kesier, B. L. Shirely, and G. S. Smith, “A simpled description for waveguiding in photonic bandgap materials,” Microwave and Optical Technology Lett. 14, 261-266 (1997). [43]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenna Propagat. 14, 302-307 (1966). [44]J. Adhidjaja and G. Horhmann, “A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body,” Geophysics J. Int. 98, 233 (1989). [45]M. Piket-May and A. Taflove, “Electrodynamics of visible-light interactions with the vertebrate retinal rod,” Opt. Lett. 18, 568-570 (1993). [46]M. Celuch-Marcysiak and W. Gwarek, “Higher order modeling of media interfaces for enhanced FDTD analysis of microwave circuits,” in 24th European Microwave Conference 24, 1530 (1994). [47]L. B. Soldano, and E. C. M. Pennings, Member, IEEE,“Optical multi-mode interference devices based in self-imaging: principles and applications,” J. Lightwave Technol. 13, 615-627 (1995). [48]R. Ulrich, and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Leet. 27, 583-592 (1978). [49]O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Amer. 63, 416-418 (1973). [50]R. Ulrich, and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337-339 (1975). [51]R. Ulrich, and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Amer. 68, 583-592 (1978). [52]L. Soldano, and E. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol. 13, 615-627 (1995). [53]L. B. Soldano, B. Veerinan, K. Smit, H. Verbeek, H. Dubost, and E. C. Pennings, “Planar monomode optical couplers based on multimode interference effects” J. Lightwave Technol. 10, 634-636 (1992). [54]R. Ulrich, and G. Ankele, “Self-imaging in homogeneous planar optical waveguides,” Appl. Phys. Lett. 27, 337-339 (1975). [55]D. C. Chang, and E. F. Kuest, “A hybrid method for paraxial beam propagation in multimode optical waveguides,” IEEE Trans. Microwave Theory technol. 29, 923-933 (1981). [56]A. Martinez, A. Griol, P. Sanchis, and J. Marti, “Mach–Zehnder interferometer employing coupled-resonator optical waveguides,” Opt. Lett., Vol.28, pp.405-407, 2003. [57]T. P. White, C. Martijn de Sterke, R. C. McPhedran, and T. Huang, “Recirculation-enhanced switching in photonic crystal Mach-Zehnder interferometers,” Opt. Express, Vol.12, pp.3035-3045, 2004. [58]A. Martinez, F. Cuesta, A. Griol, D. Mira, and J. Garcia, “Photonic-crystal 180° power splitter based on coupled-cavity waveguides,” Appl. Phys. Lett., Vol.83, pp.3033-3035, 2003. [59]M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett., Vol.77, pp.3902-3904, 2000. [60]S. Lan, S. Nishikawa, H. Ishikawa, and O. Wada, “Design of impurity band-based photonic crystal waveguides and delay lines for ultrashort optical pulses,” J. Appl. Phys., Vol.90, pp.4321-4327, 2001. [61]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics Electronics,” Phys. Rev. Lett., Vol.58, pp.2059-2062, 1987. [62]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., Vol.58, pp.2486-2489, 1987. [63]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic Crystals: Molding the flow of light”, Princeton University Press, New York, 1995. [64]S. Noda, A Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, Vol.407, pp.608-610, 2000. [65]C. Jin, S. Fan, S. Han, and D. Zhang, “Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration,” IEEE J. Quantum Electron., Vol.39, pp.160-165, 2003. [66]M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, ”Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express, Vol.12, pp.1551-1561, 2004. [67]M. Bayindir and E. Ozbay, “Band-dropping via coupled photonic crystal waveguides,” Opt. Express, Vol.10, pp.1279-1284, 2002. [68]A. Chutinan, M. Okano, and S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett., vol. 80, pp.1698-1700, 2002. [69]A. Talneau, L. L. Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, and M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett., Vol.80, pp.547-549, 2002. [70]A. Yariv, Y. Xu, R. K. Lee, and A. scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett., Vol.24, pp.711-713, 1999. [71]S. Olivier, C. Smith, M. Rattier, H. Benisty, and C. Weisbuch, T. Krauss, R. Houdré and U. Oesterlé, “Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett., Vol.26, pp.1019-1021, 2001. [72]W. J. Kim, W. Kuang, and J. D. O’Brien, “Dispersion characteristics of photonic crystal coupled resonator optical waveguides,” Opt. Lett., Vol.11, pp.3431-3437, 2003. [73]S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751-5758 (1999). [74]S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608-610 (2000). [75]S. Kim, I. Park, and H. Lim, “Proposal for ideal 3-dB splitters–combiners in photonic crystals,” Opt. Lett., Vol.30, pp.257-259, 2005. [76]C. E. Saavedra, and Y. Zheng, “Ring-Hybrid Microwave Voltage-Variable Attenuator Using HFET Transistors,” IEEE Trans. Micro. Theory Tech., Vol.53, pp.2430-2434, 2005. [77]H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y.Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, “Ultra-fast photonic crystal/quantum dot alloptical switch for future photonic networks,” Opt. Express, Vol.12, pp.6606-6614, 2004. [78]A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-port channel drop filter in two dimensional photonic crystal on silicon-on-isulator substrate,” Opt. Express, Vol.14, pp.12394-12400, 2006. [79]T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpøth, P. I. Borel, and M. Kristensen, “Wavelength-Division Demultiplexing Using Photonic crystal waveguides,” IEEE Photonic Technol. Lett., Vol.18, pp.226-228, 2006. [80]P. Halevi, A. A. Krokhin, J. Arriaga, “Photonic crystals as optical components,”Appl. Phys. Lett. 75, 2725-2727 (1999). [81]C. C. Chen, H. D. Chien, P. G. Luan, “Photonic Crystal Beam Splitters,” Appl. Opt. 43, 6188-6190 (2004). [82]A. Lupu, E. Cassan, S. Laval, L. E1 Melhaoui, P. Lyan, and J. M. Fedeli, “Experimental evidence for superprism phenomena in SOI photonic crystals,” Opt. Express 12, 5690-5696 (2004). [83]K. B. Chung, and S. W. Hong, “Wavelength demultiplexers based on the superprism phenomena in photonic crystals,” Appl. Phys. Lett. 81, 1549-1551 (2002). [84]M. Yanagisawa, Y. Inoue, M. Ishii, T. Shibata, Y. Hibino, H. Kawata, and T. Sugie, “Low-loss and compact TFF-embedded silica-waveguide WDM filter for video distribution services in FTTH systems,” in Proc. OFC 2004, (2004). [85]X. Li, G.-R. Zhou, N.-N. Feng, and W. P. Huang, “A novel planar waveguide wavelength demultiplexer design for integrated optical triplexer transceiver,” IEEE Photon. Technol. Lett., vol. 17, 1214–1216, (2005) [86]S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination ofcross talk in waveguide intersections,” Opt. Lett. 23, 1855-1857 (1998). [87]S. Lan and H. Ishikawa, “Broadband waveguide intersections with low cross talk in photonic crystal circuits,” Opt. Lett. 27, 1567-1569 (2002). [88]Y.-G. Roh, S. Yoon, H. Jeon S.-H. Han , and Q-H. Park, “Experimental verification of cross talk reduction in photonic crystal waveguide crossings,” Appl. Phys. Lett. 85, 3351-3353 (2004). [89]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, “Photonic Crystals, Molding the Flow of Light”, Princeton University Press, Princeton, NJ. (1995). [90]R. M. Jenkins, R. W. J. Deveraux, and J. M. Heaton, “A novel waveguide Mach-Zehnder interferometer based on multimode interference phenomena,” Opt. Commun. 110, 410-424 (1994). [91]E. C. M. Pennings, R. J. Deri, A. Scherer. R. Bhat, T. R. Hayes, N. C. Andreadakis, M.K. Smit, and R. J. Hawkins, “Ultra-compact, low-loss directional coupler structures on InP for monolithic integration,” Proc. Integr. Phot. Res. (IPRC). 31, 401-405 (1991). [92]M. Bachmann, P. A. Besses, and H. Melchior, “General self-imaging properties in N´N multi-mode interference couplers including phase relations,” Appl. Opt. 33, 3905-3911 (1994). [93]M. R. Paiam, C. F. Janz, R. I. MacDonald and J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photo. Technol. Lett. 7, 1180-1182 (1995). [94]L. H. Spiekman, Y. S. Oei, E. G. Metaal, F. H. Groen, I. Moerman, and M. K. Smit, “Extremely small multimode interference couplers and ultrashort bends on InP by deep etching,” IEEE Photon. Technol. Lett. 7, 874-880 (1994). [95]R. M. Jenkins, R. W. J. Deveraux, and J. M. Heaton, “Waveguide beam spltters and recombiners based in mulitimode propagation phenomena,” Opt. Lett. 17, 991-993 (1992). [96]R. Ulrich, “Image formation by phase condences in optical waveguides,” Opt. Commun. 13, 259-263 (1975). [97]J. M. Heaton, R. M. Jenkins, and D. R. Wight, “A novel waveguide Mach-Zehnder interferometer based on multimode interference phenimena,” Opt. Commun. 109, 410-424 (1994). [98]R. Ulrich, and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Amer. 68, 583-592 (1978). [99]E. Centeno, B. Guizal, and D. Felbacq, “Multiplexing and demultiplexing with photonic crystals,” J. Opt. A, Pure Appl. Opt. 1, L10–L13 (1999). [100]F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004). [101]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960–963 (1998). [102]K. Asakawa et al. “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys 8, 208 (2006). [103]S. D. Smith, “Optical bistability, photonic logic, and optical computation,” Appl. Opt. 25, 1550-1564 (1986). [104]H. Tsuda and T. Kurokawa, “Construction of an all-optical flip-flop by combination of two optical triodes,” Appl. Phys. Lett. 57, 1724-1726 (1990). [105]T . Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,'' Appl. Phys. Lett. 87, 151112 (2005). [106]Y. Watanabe, Y. Sugimoto, N. Ikeda, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, K. Asakawa, “Broadband waveguide intersection with low-crosstalk in two-dimensional photonic crystal circuits by using topology optimization,”Opt. Express 14, 9502-9507 (2006). [107]S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Optics Express 3, 4-11 (1998). [108]B.-S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Multichannel Add/Drop Filter Based on In-Plane Hetero Photonic Crystals,” J. Lightwave Technology 23, 1449-1455 (2005). [109]N.-J. Florous, K. Saitoh, and M. Koshiba, “Low-temperature-sensitivity heterostructure photonic-crystal wavelength-selective filter based on ultralow-refractive-index metamaterials,” Appl. Phys. Lett. 88, 121107 (2006). [110]N.-J. Florous, K. Saitoh, and M. Koshiba, “Three-color photonic crystal demultiplexer based on ultralow-refractive-index metamaterial technology,” Opt. Lett. 30, 2736-2738 (2005) [111]A. Sharkawy, S. Shi, and D. W. Pratrher, “Multichannel wavelength division multiplexing with photonic crystals,” Applied Optics 40, 2247-2252 (2001). [112]S. Kim, I. park, H. Lim, and C.-S. Kee, “Highly efficient photonic crystal-based multi-channel drop filters of three-port system with reflection feedback,” Optics Express 12, 5518-5525 (2004). [113]H. Ren, C. Jian, W. Hu, M. Gao, J. Gao and J. Wangm, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express 14, 2446-2458 (2006). [114]C.-W. Kuo, C.-F. Chang, M.-H. Chen, and S.-Y. Chen, “A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures,” Opt. Express 15, 1 (2007). [115]T. Lang, J.-J. He, S. He, "Cross-oder arrayed waveguide grating design for triplexers in fiber access networks," IEEE Photonics Tech. Lett. 18, 232-234 (2006). [116]X. Li, G-R Zhou, N-N Feng, W. Huang, "A novel planar waveguide wavelength demultiplexer design for integrated optical triplexer transceiver," IEEE Photonics Tech. Lett. 17, 1214-1216 (2005). [117]K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys. 32, L1746-L1748 (1993). [118]Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K. Inoue, "Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slab", J Appi. Phys. 91, 922-929 (2002). [119]Hitoshi Nakamura, Yoshimasa Sugimoto, Kyozo Kanamoto, Naoki Ikeda, Yu Tanaka, Yusui Nakamura, Shunsuke Ohkouchi, Yoshinori Watanabe, Kuon Inoue, Hiroshi Ishikawa, and K. Asakawa, "Ultra-Fast Photonic Crystal/Quantum Dot All-Optical Switch for Future Photonic Network," Opt. Express 12, 6606-6614 (2004). [120]K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, 0. Sigmund, P. I. Borel and R. Baets, "Photonic crystal and quantum dot technologies for all-optical switch and logic device", New J. Phys. 8, 1-26 (2006).
|