跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 21:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱玟慧
研究生(外文):Wen-Hui Chiu
論文名稱:隨機波動與雙指數跳躍擴散過程模型的分紅保單內嵌違約選擇權之評價
論文名稱(外文):Valuation of with-profit life insurance contracts with embedded default options under stochastic volatility and double exponential jumps
指導教授:張龍福張龍福引用關係
指導教授(外文):Lung-Fu Chang
學位類別:碩士
校院名稱:國立臺北商業技術學院
系所名稱:財務金融研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:37
中文關鍵詞:蒙地卡羅模擬随機波動度雙指數跳躍違約選擇權
外文關鍵詞:Monte Carlo SimulationStochastic VolatilityDouble Exponential JumpDefault option
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文應用蒙地卡羅模擬法並同時考量隨機波動度與雙指數跳躍擴散過程 (SVCJ)來評價保險公司之資產模型,並利用Andersen(2000)提出的最佳執行邊界法來計算保險公司所隱含違約風險之賣權價值,此違約選擇權允許保險公司提前違約,其性質近似美式賣權但其中屬於履約價之保單準備金並非固定的值,保單準備金會隨著時間而遞增。接著本文對分紅保單做敏感度分析,考慮本國壽險業者的資本結構,比較槓桿比率在較高或較低下對參數敏感度之情形。
In this paper, we use Monte Carlo simulation approach with stochastic volatility and the double exponential jump diffusion process (SVCJ) model to simulate the assets of the insurance companies and the use of Andersen (2000) proposed a method to calculate the optimal exercise boundary implicit insurance companies including the right to sell the value of default risk, this default option allows early exercise, its approximate nature American put option strike price but the policy reserve is not a fixed value, the policy reserve increments over time. This paper implements sensitivity analysis of the participating policy when the insurance company has a higher or lower leverage levels.
中文摘要 I
英文摘要 II
目 次 III
表 次 IV
圖 次 V
第一章 緖論 1
第一節 研究動機與目的 1
第二節 論文架構概述 4
第二章 文獻回顧 5
第一節 隨機波動模型 6
第二節 跳躍-擴散模型 9
第三節 美式蒙地卡羅 11
第四節 保單文獻 13
第三章 研究方法 15
第一節 保單價值模型 15
第二節 資產模型假設 17
第三節 美式蒙地卡羅 19
第四章 研究結果 22
第一節 蒙地卡羅模擬價格 22
第二節 敏感度分析 23
第五章 結論 33
參考文獻 35

1. Andersen, L., 2000,“A Simple Approach to the Pricing of Bermudan Swaptions in the Multifactor LIBOR Market Model.” Journal of Computational Finance, 3, 1-32.
2.Black, F., and M. Scholes, 1973,”The Pricing of Options and Corporate Liabilities.”,Jouncal of Political Economy. 81, 637-654
3.Bakshi, G., C. Cao, and Z. Chen, 1997, “Empirical Performance of Alternative Option Pricing Models,” Journal of Finance, 52, 2003-2049.
4.Bates, D., 1996,“Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in PHLX deutsche market options.” Review of Financial Studies, 9, 69-107.
5.Brennan, M. and E. S. Schwartz, 1976, “The Pricing of Equity-Linked Life Insurance Policies with an Asset Value Guarantee”, Journal of Financial Economics, 3, 195-213.
6.Ballotta L., S. Haberman and N. Wang, 2006, “Guarantees in With-Profit and Unitized With-Profit Life Insurance Contracts: Fair Valuation Problem in Presence of the Default Option.” , 73, 97-121
7.Boyle, P. P. and E. S. Schwartz, 1977, “ Equilibrium Prices of Guarantees under Equity-Linked Contracts”, Journal of Risk and Insurance, 44, 639-660.
8.Boroadie, M., and O. Kaya, 2006, “Exact Simulation of Stochastic Volatility and other Affine Jump Diffusion Processes.” Operation Research, 54, 217-231
9.Beliaeva, N. A. and S. K. Nawalkha, 2010, ”A Simple Approach to Pricing American Options Under the Heston Stochastic Volatility Model.”The Journal of Derivatives,25-42
10.Cox, J. C., S. A. Ross, and M. Rubinstein, 1979,“Option Pricing: A Simplified Approach.” Journal of Financial Economics, 7, 229-263
11.Duffie, D., J. Pan, and K. Singleton, 2000, “Transform Analysis and Asset Pricing for Affine Jump-Diffusions.” Econometrica, 68, 1343-1376
12.Grosen, A. and P. L. Jorgensen, 1997, “Valuation of Early Exercisable Interest Rate Guarantees”, Journal of Risk and Insurance, 64 , 481-503.
13.Grosen, A. and P. L. Jørgensen, 2000,“Fair Valuation of Life Insurance Liabilities: The Impact of Interest Rate Guarantees, Surrender Options, and Bonus Policies,” Insurance: Mathematics and Economics, 26, 37–57.
14.Grosen, A. and P. L. Jørgensen, 2002,“Life Insurance Liabilities at Market Value: An Analysis of Investment Risk, Bonus Policy and Regulatory Intervention Rules in a Barrier Option Framework,”Journal of Risk Insurance, 69, 63–91.
15.Heston, S. L., 1993,”A Closed-From Solution for Options with Stochastic Volatility, with Applications to Bond and Currency Options”, Review of Financial Studies , 6, 27-343.
16.Hull, J., and A. White, 1987, “The pricing of Options on Assets with Stochastic Volatility. “Journal Financial, 42, 281-300
17.Kou, S. G., 2002, “A Jump Diffusion Model for Option Pricing.” Management Science, 48, 1086-1101
18.Longstaff, F., and E. Schwartz., 2001, “ Valuing American Options by Simulation: A Simple Least-Squares Approach.” Review of Financial Studies, 14, 113-147.
19.Merton R., 1976,“Option Pricing When the Underlying Stock Returns Are Discontinuous. “Journal of Financial Economics, vol.3,pp.125-144,Jan.-March
20.Nelson, D. and K. Ramaswamy , 1990,“Simple Binomial Processes as Diffusion Approximations in Financial Models”, The Review of Financial Studies, 393-430.
21.Tilley, J. A., 1993, “Valuing American Options in a Path Simulation Model.” Transactions of the Society of Actuaries, 45, 499-520.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊