跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 07:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張弘緯
研究生(外文):Hung-Wei Chang
論文名稱:添加鉻、鋅元素對噴霧熱解氧化錳電容特性影響研究
論文名稱(外文):Effect of Chromium, Zinc Additions on Capacitive Properties of Spray Pyrolyzed Manganese Oxide
指導教授:陳錦毅陳錦毅引用關係
指導教授(外文):Chin-Yi Chen
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:97
中文關鍵詞:噴霧熱解氧化錳循環伏安充放電超級電容器電泳沉積
外文關鍵詞:charge/dischargeZincManganese oxideSupercapacitorSpray pyrolysisElectrophoresis depositionChromiumCyclic voltammetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
本研究以噴霧熱解法在400、500 ℃(SP400、SP500)熱解溫度下製備具中空球形的錳氧化物粉體作為超級電容器之電極活性材料,並以靜電沉積方式收集粉體,再藉由電泳沉積法將粉末沉積於石墨基材上,來探討其電容特性。除了製備純錳氧化物粉體外,也於先驅物中添加少量的醋酸鉻或醋酸鋅(0、1、2、5、10 at.%)形成錳/鉻或錳/鋅複合氧化物,探討添加這兩個元素對於錳氧化物薄膜電極對於電容性質的影響。
經由XRD比對的結果發現噴霧熱解所製備的粉體為奈米晶Mn3O4相,其中添加鉻或鋅的錳氧化物同樣具有Mn3O4相,由晶格體積的計算發現在SP400與SP500試樣中隨著鉻添加量的增加晶格有增大的趨勢,而隨添加鋅含量的增加其晶胞體積則有減小的現象;在這兩個溫度下隨著鉻或鋅含量的增加其晶粒皆有變小的趨勢,顯示添加鉻或鋅都會抑制晶粒的成長。從SEM的觀察發現所製備的粉體皆呈現中空球狀且表面有凹陷、皺摺與顆粒破碎的情形,其平均顆粒大小分布在420~690 nm之間;藉由電泳沉積後其表面仍有顆粒堆疊的多孔結構。
經由電泳沉積後的薄膜,經過循環伏安測試電化學性質,在25 mVs-1的掃描速率下,在SP400時錳氧化物隨著鉻含量的增加其電容值有增加的趨勢,其中以添加10 at.% Cr時電容值最高(246 F/g),在SP500也有相同趨勢,但以添加1 at.% Cr的電容值較高(257 F/g),添加鉻有助於錳氧化物晶胞體積的增加,使其有較佳的電容值;同樣的掃描速率在SP400不同鋅添加量的錳氧化物,其電容值也隨著鋅含量的增加而有所提升,其中又以添加10 at.% Zn時最高達298 F/g,雖然添加鋅時其晶胞體積會縮小,但由於氧化鋅有好的電子學性質與擬電容特性有助於錳氧化物電容性質的提升。
In the present research, Mn-oxide powders with a hollow spherical structure were prepared by spray pyrolysis (SP) at temperatures of 400 and 500 ?aC (SP400, SP500) for the applications of supercapacitor electrode. The resulting powders were collected by electrostatic deposition technique, and subsequently deposited onto graphite substrates by electrophoresis deposition (EPD) method for the investigations of pseudocapacitive properties. Furthermore, small amounts of chromium acetate or zinc acetate (0, 1, 2, 5, 10 at.%) were respectively added into the precursor solution for the Mn/Cr oxide or Mn/Zn oxide composite syntheses. The influences of the additions on the supercapacitive properties of the manganese oxide film electrode were thus investigated.
According to XRD analyses, the resulting powder was identified as a nanocrystalline Mn3O4 phase after SP. From the calculation of the XRD data, the lattice volume of SP400 and SP500 was found to increase with the increase of chromium content; whereas, decrease with the increase of zinc content. The grain sizes of both the SP400 and SP500 exhibited a decline trend when chromium or zinc was added, showing that the additives can inhibit the grain growth of the SP Mn-oxide powders. The SEM observation showed that the resulting particles were spherical in shape with a hollow structure and wrinkle surfaces. Moreover, some of SP particles even exhibited fracture surfaces. The average particle size ranged between 420-690 nm. After EPD, the particles were observed to stack to be a porous structure showing a high specific surface area.
After EPD, electrochemical properties of the SP powders were examined by cyclic voltammetry at a scan rate of 25 mVs-1. The specific capacitance of SP400 increased with increasing the chromium content, attaining its highest value (246 F/g) when 10 at.% chromium was added. The SP500 also exhibited a similar trend, but reached its highest value (257 F/g) when 1 at.% chromium was added. Chromium addition might increase the lattice volume of Mn-oxide to show a better capacitive performance of the EPD coating. The specific capacitance of zinc-added SP400 increased with increasing the amount of zinc at the same scan rate. The capacitance attained its highest value at 298 F/g when the 10 at.% zinc was added. Although the lattice volume of the zinc-added Mn-oxide was reduced, good electronics and pseudocapacitive natures of zinc oxide might improve the pseudocapacitive performances of SP Mn-oxide powder.
摘要 I
Abstract III
目錄 V
表目錄 VIII
第一章、前言 1
第二章、 文獻回顧 3
2.1電化學電容介紹 3
2.2 電化學電容器 4
2.2.1 電化學電容器之分類 7
2.2.1.1 電雙層電容器(electrical double-layer capacitors, EDLCs) 7
2.2.1.2 擬電容電容器(Pseudocapacitnce) 9
2.2.1.3 混和電化學電容器(Hybrid electrochemical capacitors, HECs) 12
2.3 金屬氧化物電極的種類、製備與應用 12
2.3.1 錳氧化物電極製備法 14
2.3.2 電化學電容器電解液的種類 20
2.3.3 金屬氧化物電極的製備方法 24
2.4 噴霧熱解法 28
2.4.1 噴霧熱解法簡介 28
2.4.2 噴霧熱解製程 29
2.4.2.1 先驅物溶液 29
2.4.2.2 先驅物霧化 29
2.4.2.3 溶劑之蒸發 30
2.4.2.4 乾燥 31
2.5 電化學反應系統 33
第三章、實驗目的與方法 35
3.1 實驗設計與目的 35
3.2 錳氧化物粉體之製備與收集 36
3.3 電極製備 37
3.3.1 電極基材前處理 37
3.3.2 電泳披覆錳氧化物與添加鐵或鎳之錳氧化物薄膜 37
3.4 氧化錳之粉體與電極材料分析 38
3.4.1 熱重分析 38
3.4.2 傅立葉轉換紅外線光譜分析 39
3.4.3 X光繞射分析 39
3.4.4 高解析穿透式電子顯微鏡粉體結構分析 40
3.4.5 冷場發射掃描式電子顯微鏡表面型態分析 40
3.5 氧化錳電極之電容特性分析 41
3.5.1 循環伏安分析 42
3.5.2 計時電位充放電測試 42
第四章、結果與討論 43
4.1 錳/鉻、錳/鋅複合氧化物薄膜 43
4.1.1 先驅物粉體之特性分析 43
4.1.2 錳/鉻複合氧化物噴霧熱解粉體之特性分析 44
4.1.2.1 XRD結晶結構分析 44
4.1.2.2 錳/鉻複合氧化物粉體之TEM微結構觀察 48
4.1.2.3 錳/鉻複合氧化物之FESEM表面型態分析 50
4.1.3 錳/鉻複合氧化物薄膜之電性分析 56
4.1.3.1 CV測試 56
4.1.3.2 充放電分析 65
4.1.4 錳/鋅複合氧化物噴霧熱解粉體之特性分析 67
4.1.4.1 XRD結晶結構分析 67
4.1.4.2 錳/鋅複合氧化物粉體之TEM微結構觀察 70
4.1.4.3 錳/鋅複合氧化物之FESEM表面型態分析 73
4.1.5 錳/鋅複合氧化物薄膜之電性分析 78
4.1.5.1 CV測試 78
4.1.5.2 充放電分析 86
第五章、結論 88
第六章、未來工作 90
參考文獻 91
1. R. J. Brodd. K. R. Bullock, R. A. Leising, R. L. Middaugh, J. R. Miller, and E. Takeuchi., “Batteries, 1977 to 2002”, J. Electrochem. Soc., 151 (2004) K1.

2. R. Kötz and M. Carlen, “Principles and Applications of Electrochemical Capacitors”, Electrochim. Acta, 45 (2000) 2483-2498.

3. B. E. Conway, “Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage”, J. Electrochem. Soc., 138 (1991) 1539.

4. Chuang Peng, Shengwen Zhang, Daniel Jewell, George Z. Chen, “Carbon nanotube and conducting polymer composites for supercapacitors”, Progress in Natural Science, 18 (2008) 777-788.

5. Pandolfo AG, Hollenkamp AF., “Carbon properties and their role in supercapacitors”, J. Power Sources, 157 (2006) 11-27.

6. Cuentas Gallegos AK, Rincon ME, “Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells”, J. Power Sources, 162 (2006) 743-747.

7. Jeng-Kuei Chang, Wen-Chien Hsieh, Wen-Ta Tsai, “Effects of the Co content in the material characteristics and supercapacitive performance of binary Mn-Co oxide electrodes”, J. Alloys and Compounds, 461 (2008) 667-674.

8. Wen-Jia Zhou, Mao-Wen Xu, Dan-Dan Zhao, Cai-Ling Xu, Hu-Lin Li, “Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors”, Microporous and Mesoporous Materials, 117 (2009) 55-60.

9. J. H. Park, and O Ok Park, “Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes”, J. Power Sourses, 111 (2002) 185.

10. D. Qu, H. Shi, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources, 74 (1998) 99.

11. M. Nakamura, M. Nakanishi, and K. Yamamoto, “Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors”, J. Power Sources, 60 (1996) 255.

12. I. Tanahashi, A. Yoshida, and A. Nishino, “Preparation and Characterization of Activated Carbon Tablets for Electric Double-layer Capacitors “, Bull. Chem. Soc. Jpn., 63 (1990) 2755-2758.

13. S. Sarangapani, B.V. Tilak, and C.P. Chen, “Materials for Electrochemical Capacitors Theoretical and Experimental Constraints”, J. Electrochem. Soc., 143 (1996) 3791-3799.

14. Yong Zhang, Hui Feng, Xingbing Wu, Lizhen Wang, Aiqin Zhang, Tongchi Xia, Huichao Dong, Xiaofeng Li, Linsen Zhang, “Progress of electrochemical capacitor electrode materials: A review”, International Jurnal of Hydrogen Energy, 34 (2009) 4889-4899.

15. 謝玟茜,“陽極沉積錳-鈷氧化物之材料特性與擬電容形為研究”,國立成奶j學材料科學及工程學系碩博士班碩士論文,2006。

16. 林加岩,“多孔奈米氧化錳薄膜之電容特性研究”,逢甲大學材料科學研究所碩士論文,2006。

17. Gao Bo, Zhang Xiaogang, Yuan Changzhou, Li Juan, Yu Long, “Amorphous Ru1-yCryO2 loaded on TiO2 nanotubes for electrochemical capacitors”, Electrochimica Acta, 52 (2006) 1028-1032.

18. K. K. Liu and M.A. Anderson, “Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors”, J. Electrochem. Soc., 143 (1996) 124-130.

19. V. Srinivasan and J.W. Weidner, “Studies on the Capacitance of Nickel Oxide Films: Effect of Heating Temperature and Electrolyte Concentration”, J. Electrochem. Soc., 147 (2000) 880-885.

20. V. Srinivasan and J.W. Weidner, “An Electrochemical Route for Making Porus Nickel Oxide Electrochemical Capacitors”, J. Electrochem. Soc., 144 (1997) L210-L213.

21. C.Lin, J.A. Ritter, and B.N. Popov, “Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors”, J. Electrochem. Soc., 145 (1998) 4097-4103.

22. T.C. Liu, W. G. Pell, and B. E. Conway, “Stages in the Development of Thick Cobalt Oxide Films Exhibiting Reversible Redox Behavior and Pseudocapacitance”, Electrochim. Acta, 44 (1999) 2829-2842.

23. H. Y. Lee and J. B. Goodenough, “Ideal Supercapacitor Behavior of Amorphous V2O5•nH2O in Potassium Chloride (KCl) Aqueous Solution”, J. Solid State Chem., 148 (1999) 81-84.

24. B. Messaoudi, S. Joiret, M. Keddam, and H. Takenouti, “Anodic Behaviour of Manganese in Alkaline Medium”, Electrochim. Acta, 46 (2001) 2487-2498.

25. C. C. Hu and T. W. Tsou, “Capacitive and Textural Characteristics of Hydrous Manganese Oxide Prepared by Anodic Deposition”, Electrochim. Acta, 47 (2002) 3523-3532.

26. Yang X-H, Wang Y-G, Xiong H-M, Xia Y-Y, “Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor”, Electrochim. Acta, 53 (2007) 752-757.

27. Zhang ZJ, Chen XY, Wang BN, Shi CW, “Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties”, J. Cryst. Growth, 310 (2008) 5453-5457.

28. 簡子欽,“鐵鎳元素對氧化錳超級電容特性影響之研究”, 逢甲大學材料科學研究所碩士論文,2008。

29. Y. U. Jeong and A. Manthiram, “Amorphous Ruthenium-Chromium Oxides for Electrochemical Capacitors”, Electrochemical and Solid-State Letters, 3 (5) (2000) 205-208.

30. Yanping Zhang, Xiaowei Sun, Likun Pan, Haibo Li, Zhuo Sun, Changqing Sun, Beng Kang Tay, “Carbon nanotube-ZnO nanocomposite electrodes for supercapacitors”, Solid State Ionics, 180 (2009) 1525-1528.

31. J. P. Zheng, T. R. Jow, “Effect of salt concentration in eletrolytes on the maximum energy storage for double layer capacitors”, J. Electrochem. Soc., 144 (1997) 2417.

32. 蔡文達,張乃奎,“金屬氧化物系列超高電容器簡介”,材料會訊,8[3] (2001) 35.

33. H. Y. Lee, V. Manivannan and J. B. Goodenough, “Electrochemical capacitors with KCl electrolyte”, Comptes Rendus Chimie, 2 (1999) 565-577.

34. S. C. Pang, and M. A. Anderson, “Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide”, J. Electrochem. Soc., 147 (2000) 444.

35. Ravinder N. Reddy, Ramana G. Reddy, “Sol-Gel MnO2 as an electrode material for electrochemical capacitors”, J. Power Sources, 124 (2003) 330.

36. C. C. Hu and T. W. Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochem. Comm., 4 (2002) 105.

37. Kim I-H, Kim K-B, “Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications”, J. Electrochem. Soc., 153 (2006) A383-A389.

38. Sugimoto W, Yokoshima K, Ohuchi K, Murakami Y, Takasu Y, “Fabrication of thin-film, flexible, and transparent electrodes composed of ruthenic acid nanosheets by electrophoretic deposition and application to electrochemical capacitors”, J. Electrochem. Soc., 153 (2006) A255-A260.

39. Sugimoto W, Iwata H, Murakami Y, Takasu Y, “Electrochemical capacitor behavior of layered ruthenic acid hydrate”, J. Electrochem. Soc., 151 (2004) A1181–A1187.

40. Choudhury NA, Shukla AK, Sampath S, Pitchumani S, “Crosslinked polymer hydrogel electrolytes for electrochemical capacitors”, J. Electrochem. Soc., 153 (2006) A614-A620.

41. Yang X-H, Wang Y-G, Xiong H-M, Xia Y-Y, “Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor”, Electrochim. Acta, 53 (2007) 752–757.

42. Brousse T, Toupin M, Be´langer D, “A hybrid activated carbonmanganese dioxide capacitor using a mild aqueous electrolyte”, J. Electrochem. Soc., 151 (2004) A614-A622.

43. Hwang S-W, Hyun S-H, “Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors”, J. Power Sources, 172 (2007) 451–459.

44. Zhao D-D, Bao S-J, Zhou W-J, Li H-L, “Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor”, Electrochem. Commun., 9 (2007) 869–874.

45. Yuan G-H, Jiang Z-H, Aramata A, Gao Y-Z, “Electrochemical behavior of activated-carbon capacitor material loaded with nickel oxide”, Carbon, 43 (2005) 2913–2917.

46. Fan Z, Chen J, Cui K, Sun F, Xu Y, Kuang Y, “Preparation and capacitive properties of cobalt-nickel oxides/carbon nanotube composites”, Electrochim. Acta, 52 (2007) 2959–2965.

47. Liu H, He P, Li Z, Liu Y, Li J, “A novel nickel-based mixed rareearth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte”, Electrochim. Acta, 51 (2006) 1925–1931.

48. Chen C, Zhao D, Wang X, “Influence of addition of tantalum oxide on electrochemical capacitor performance of molybdenum nitride”, Mater. Chem. Phys., 97 (2006) 156–161.

49. Liu W, Soneda Y, Kodama M, Yamashita J, Hatori H, “Lowtemperature preparation and electrochemical capacitance of WC/carbon composites with high specific surface area”, Carbon, 45 (2007) 2759–2767.

50. Kuo S-L, Wu N-L, “Electrochemical capacitor of MnFe2O4 with organic Li-ion electrolyte”, Electrochem. Solid-State Lett., 10 (2007) A171-A175.

51. Choi D, Kumta PN, “Nanocrystalline TiN derived by a two-step halide approach for electrochemical capacitors”, J. Electrochem. Soc., 153 (2006) A2298-A2303.

52. Lao ZJ, Konstantinov K, Tournaire Y, Ng SH, Wang GX, Liu HK, “Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors”, J. Power Sources, 162 (2006) 1451–1454.

53. G. L. Messing, S.C. Zhang, and G.V. Jayanthi, “Ceramic Powder Synthesis bySpray Pyrolysis”, J. Am. Ceram. Soc., 76 (1993) 2707-2726.

54. H. Leong, “Morphology Control of Particles Generated from The Evaporation of Solution Droplets: Theoretical Condsideration”, Aerosol Sci., 18 (1987) 511-524.

55. H. Leong, “Morphology Control of Particles Generated from the Evaporation of Solution Droplets: Experiments”, Aerosol Sci., 18 (1987) 525-552.

56. S. Nesic and J. Vodnik, “Kinetics of Droplet Evaporation”, Chem. Eng. Sci., 46 (1991) 27-37.

57. W. Scherer, “Crack Tip Stress in Gel”, J. Non-Cryst. Solids, 144 (1992) 10-16.

58. 江鴻儒,“循環伏安及電鍍法製備釕電極在電化學電容器的應用”, 國立中正大學化學工程研究所碩士論文,2001。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top