水和廢水監測分析方法指南編委會編,水和廢水監測分析方法指南上冊,
中國環境科會出版社,225-240(1990)
王國華,“以 UV/TiO2 程序處理氣相中三氯乙烯之研究”,國立中興大學
環境工程學系博士論文, (1998)
田瑤,水中化學需氧量分析方法之改善,國立中興大學環境工程學所碩士論文,(2000)
行政院環保署,放流水標準,(2009)
行政院環保署環檢所水質檢測方法,水中化學需氧量檢測方法-重鉻酸鉀
迴流法,NIEA W515.54A,(2007)
行政院環保署環檢所水質檢測方法,水中化學需氧量檢測方法-密閉式迴
流滴定法,NIEA W517.52B,(2009)
行政院環保署環檢所水質檢測方法,水中化學需氧量檢測方法-密閉迴流
滴定法,NIEA W517.51B,(2007)
行政院環保署環檢所水質檢測方法,水中生化需氧量檢測方法,NIEA
W510.54B,(2000)107
江漢全,水質分析,三民書局,211-247(1996)
吳宗榮,水及廢水分析,復文書局,119-123(1990)。
林世宗,廢水中化學需氧量偵測方法之改進-無汞式微波消化法,私立淡
江大學水資源及環境工程學系碩士論文,(2001)
林鳳祥,以密閉式微波消化法偵測廢水中學需氧量之研究,淡江大學水環
所碩士論文,(2000)
金利通,張繼東,陳俊水,劉梅川,楊佳音,楊廣達,TiO2 光催化傳感器
的製備及其在化學需氧量測定中的應用研究,23(2),(2003)
胡湧剛, 楊澤玉 ,化學發光 2 化學需氧量測定新方法,12(31),1430-1432,
(2003)
唐政宏,探討二氧化鈦觸媒電極氫氧自由基產率及處理生活污水效率,朝
陽科技大學環境工程與管理研究所碩士學位論文,2007
孫國書,以連續式微波消化/可見光法偵測廢水中化學需氧量,淡江大學
水環所碩士論文,(2002)
徐貴新,水質分析實驗,高立圖書有限公司,225-250(1998)。
徐貴新,水質分析實驗,高立圖書有限公司,261-268(2007)。
馬志明,以紫外線/二氧化鈦程序處理氣相三氯乙烯污染物反應行為之研108
究,國立台灣科技大學化學工程技術研究所碩士論文,(1998)
國家環保局《水和廢水監測分析方法》編委會,水和廢水監測分析方法(第
三版),中國環境科學出版社,(1989)
梁乃允,奈米二氧化鈦透明結晶膜之製作及光催化應用,國立中央大學化
學工程研究所碩士學位論文,(1999)
莊英良,以紫外線/二氧化鈦程序分別處理含六價鉻及亞素靈水溶液反應
行為之研究,國立台灣工業技術學院化學工程技術研究所碩士論文,
(1996)
陳俊翔,二氧化鈦觸媒製備對氣相苯及甲苯光催化分解之影響,國 立台灣
科技大學化學工程技術研究所碩士論文,(2000)
陳曉青、張磊,流動注射停流法快速測定環境水樣中COD,理化檢驗-化
學分冊,37(7),11-13,(2001)
黃仲仁,以陽極氧化法研製二氧化鈦電極,國立台灣工業技術學院化學工
程技術研究所碩士論文,(1990)
黃冠誌,電化學陽極氧化法被二氧化鈦薄膜,國立中興大學材料工程學研
究所碩士論文,(2002)
趙亞乾,Cl-
、NH3 和 H2O2 對 COD 測定的影響,上海環境科學,14B,109
32-34,(1995)
趙鵬文,以 UV/TiO2 程序處理氣相中三氯乙烷之研究,國立中興大學環境
工程學系研究所碩士論文,(1999)
鄭世崧,陽極氧化二氧化鈦電極之光電化學特性,國立台灣工業技術學院
化學工程技術研究所碩士論文,(1992)
鄭芳宇,海水化學需氧量之研究,正修科技大學化工與材料工程研究所碩
士學位論文,(2008)
鄭桂馥,高錳酸鉀法測化學耗氧量(COD)淺析,黑龍江水利科技,2,(1996)
賴燕昭,由溶液-凝膠法製備之鈦酸鉛陶瓷薄膜的結構成長,國立台灣工
業技術學院化學工程技術係研究所碩士論文,(1997)
叢俏,Cl
-
、NH
4+
對化學需氧量測定的影響及消除的研究,渤海大學學報
自然科學版,26(3),209-213(2005)。
Ai, S., Li, J., Yang, Y., Gao, M., Pan, Z., Jin, L., “Study on photocatalytic
oxidation for determination of chemical oxygen demand using a
nano-TiO2–K2Cr2O7 system”, Analytica Chimica Acta, 509,
237-241(2004).
American Public Health Association, Standard Methods for the Examination of
Water and Wastewater(18th ed.), American Public Health Association,
Washington, DC (1992). 110
Arikawa, S., Karube, Y., “ Evaluation of chemical oxygen demand (COD)
based on coulometric determination of electrochemical oxygen demand
(EOD) using a surfaceoxidized copper electrode”, Analytica Chimica
Acta, 398, 161-171(1999).
Axen, E., “A Mercury-Free Microwave Method for the Chemical Oxygen
Demand Analysis of Sewage” , Volume 59, Issue 1(1995)
Chen, J., Zhang, J., Xian, Y., Ying, X., Liu, M., Jin, L., “Preparation and
application of TiO2 photocatalytic sensor for chemical oxygen demand
determination in water research”, Water Research, 39, 1340-1346(2005).
Clesceri, L.S., Greenberg, A.E., Eaton, A.D. (eds.): Method 5220, “Chemical
Oxygen Demand(COD)”, in APHA, Standard Methods for the
Examination of Water and Wastewater”, 20thed., American Public Health
Association, Washington, DC(1998).
Huang, S, S., Chen, J, S., “Comparison of the characteristics of TiO2 films
prepared by low-pressure and plasma-enhanced chemical vapor
deposition”,Volume 13, Number 2 , 77-81(2002)
Huijun, Zhao., Dianlu, Jiang., Shanqing, Zhang., KylieCatterall.,
Richard, John., “Development of a Direct Photoelectrochemical Method
for Determination of Chemical Oxygen Demand Anal” , Chem, 76 (1),
155–160(2004)
Jacoby, W, A., Blake, M, Daniel., Penned, J, A., Boulter J, E., Vargo, George,
M, C., Dolberg, S, K., “Heterogeneous Photocatalysis for Control of
Volatile Organic Compound in Indoor Air”, J. Air. Waste Manag
46,891-898(1996)111
Kasuga, Tomoko., Hiramatsu, M., Sekino, A, T., Niihara, K., “Formation of
Titanium Oxide Nanotube Langmuir”, 14 (12), 3160–3163(1998)
Kim, Y, C., Sasaki, S., Yano ,K., kebukuro, i ., Hashimoto, I .,“Isao Karube
Photocatalytic sensor for the determination of chemical oxygen demand
using flow injection analysis”, Analytica Chimica Acta 432, 59–66 (2001)
Kim, Y.C., Sasaki, S., Yano, K., Ikebukuro, K., Hashimoto, K., Karube, I.,
“Photocatalytic sensor for the determination of chemical oxygen demand
using flow injection analysis”, Analytica Chimica 2280-2285(2007).
Lee, K.H., Ishikawa, T., McNiven, S., Nomura, Y., Sasaki, S., Arikawa, Y.,
Karube, I., “Chemical oxygen demand sensor employinga thin layer
electrochemical cell”, Analytica Chimica Acta, 386, 211-220(1999).
Lee, K.H., Ishikawa, T., McNiven, S.J., Nomura, Y., Hiratsuka, A., Sasaki, S.,
Arikawa, Y., Karube, I., “Evaluation of chemical oxygen demand (COD)
based on coulometric determination of electrochemical oxygen demand
(EOD) using a surfaceoxidized copper electrode”, Analytica Chimica
Acta, 398, 161-171(1999).
Li, J., Li, L., Zheng, L., Xian, Y., Ai, S., Jin, L., “Amperometric determination
of chemical oxygen demand with flowinjection analysis using F-PbO2
modified electrode”, Analytica Chimica Acta, 548, 199-204(2005).
Li, J., Li, L., Zheng, L., Xian, Y., Jin, L., “Determination of chemical oxygen
demand values by a photocatalytic oxidation method using nano-TiO2
film on quartz”, Talanta, 68, 765-770(2006).
Li, J., Zheng, L., Li, L., Shi, G., Xian, Y., Jin L., “Photoelectro-synergistic
catalysis combined with a FIA system application on determination of 112
chemical oxygen demand”, Talanta, 72, 1752-1756(2007).
Merck reports, “Determination of chemical oxygen demand in water and
wastewater”, (1998)
Obee, T, N., Steve, O., “Hay Effects of Moisture and Temperature on the
Photooxidation of Ethylene on Titania”, Environ. Sci. Technol, 31(7),
2034–2038(1997)
Ollis, D,F., Marinangeli, R,E., “Photoassistd Heterogeneous Catalysis with
Optical Fibers: 1.Isolated Single Fiber”, AIChE Journal, 23(4),
415-426(1977).
Paulose, Maggie., Shankar, Karthik., Yoriya, Sorachon., Prakasam, H, E.,
Varghese, O, K., Mor, G, K., Latempa, T, A, Fitzgerald, Grimes, A., Craig,
A., “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm
in LengthJ”, Phys, Chem. B, 110 (33), 16179–16184(2006)
Ramon, R., Valero, F., Valle, M.E., “Rapid determination of chemical oxygen
demand using a focused microwave heating system featuring temperature
control”, Analytica Chimica Acta, 491, 99-109(2003).
Sakai, H., Kawahara, H., Shimazaki, M., Abe ,M., “Preparation of Ultrafine
Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions
in the Inner Aqueous Phase of Reversed Micelles: Effectof Alcohol
Addition”, Langmuir, 14 (8), 2208–2212(1998)
Sawyer, C.N., McCarty, P. L., “Chemistry for Environmental Engineering”,
468-472(1991)
Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto , K., Fujishima, A., “An
efficient TiO2 thin-film photocatalyst: photocatalytic properties in 113
gas-phase acetaldehyde degradation”, Volume 98, Issues 1–2, 2 August,
79–86(1996)
U.S.A. Environmental Protection Agency, “Chemical oxygen demand
(Colorimetric, Automated;Manual)”, EPA Method 410.4, (1993).
Vinodgopal, K., Prashant, V.,“ Enhanced Rates of Photocatalytic Degradation
of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films ”,
Environ. Sci. Technol., 1995, 29 (3), 841–845(1995)
Watanabe, Takanobu., Haga,Yutaka., Yosomiya, Ryutoku., “Photoconductive
properties of annealed TiO2 dispersion composites”,Volume 33, Issue 10,
Pages 2057–2060(1992)
Yu, H., Wang, H., Quan, X., Chen, S., Zhang, Y., “Amperometric
determination of chemical oxygen demand using boron-doped diamond
(BDD) sensor”, Electrochemistry Communications, 9, Acta, 432,
59-66(2001).
Zhang, J., Zhou, B., Zheng, Q., Li, J., Bai, J., Liu, Y., Cai, W.,
“Photoelectrocatalytic COD determination method using highly ordered
TiO2 nanotube array”, Water Research, 43, 1986-1992(2009).
Zhang, S., Zhao, H., Jiang, D., John R., “Photoelectrochemical determination
of chemical oxygen demand based on an exhaustive degradation model in
a thin-layer cell”, Analytica Chimica Acta, 514, 89-97(2004)
Zhang, Z., Yuan, Y., Fang, Y., Liang, H., Ding, H., Jin, L., “Preparation of
photocatalytic nano-ZnO/TiO2 film and application for determination of
chemical oxygen demand”, Talanta, 73, 523-528(2007).
Zhu, L., Chen, Y., Wu, Y., Li, X., and Tang, H., “A 114
surface-fluorinated-TiO2–KMnO4 photocatalytic system for determination
of chemical oxygen demand”, Analytica Chimica Acta, 571,
242-247(2006).