跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/30 16:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳盈芝
研究生(外文):Ying-Jhih Wu
論文名稱:添加薑葉超音波萃取液用以改善微波煉製雞油貯存期間品質之評估
論文名稱(外文):Evaluation of ultrasonic-assisted extraction of ginger leaf and its application to improve qualities of microwave-rendered broiler skin fat during accelerated storage
指導教授:劉登城譚發瑞
口試委員:陳明造
口試日期:2016-07-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:75
中文關鍵詞:薑葉超音波微波煉製油脂氧化
外文關鍵詞:ginger leafultrasonic extractionmicrowave renderingoil oxidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
油脂為日常飲食重要之一環,貯存過程中,不飽和脂肪酸比例較高者,如:雞油等,容易氧化造成養分流失,色澤、質地及風味改變。合成抗氧化劑之添加能減緩油質氧化,但由於消費者接受度較低,故傾向以天然抗氧化劑取代。薑 (Zingiber officinale, Zingiberaceae) 廣泛種植於熱帶地區,普遍利用其地下莖,採收後薑葉多棄置不用。文獻顯示,許多農業副產物含有大量多酚類 (polyphenols) 化合物,具有抗氧化潛力。因此,本試驗旨在探討 (1) 比較超音波及震盪方式對薑葉之萃取效果;(2) 超音波萃取溫度及時間對薑葉乙醇萃取物之影響;(3) 進一步將此添加至微波煉製雞油中,探討加速貯存過程中 (65°C) 油脂品質之變化。
第一階段試驗結果顯示,薑葉萃取20、40及60 min時,超音波所得萃取液之總酚含量 (TPC)、總類黃酮含量 (TFC)、DPPH自由基清除能力 (DPPH)、亞鐵離子螯合能力 (FIC) 及還原能力 (RP),顯著高於震盪萃取所得者 (P < 0.05),因此選擇超音波萃取進行後續試驗。第二階段結果顯示,TPC、TFC、FIC及RP會隨著萃取溫度增加及萃取時間延長而上升,以60°C萃取60 min者,其抗氧化能力顯著較高 (P < 0.05)。萃取溫度45°C及60°C時,各組之DPPH則隨萃取溫度及時間增加而下降。第三階段試驗分別添加0 ppm (CON)、250 ppm (G1)、500 ppm (G2)、1000 ppm (G3) 及2000 ppm (G4) 於60°C下萃取60 min所得之薑葉乙醇萃取液,至微波煉製雞油中進行65°C貯存試驗,並與添加200 ppm BHT者進行比較。結果顯示,CON、G1、G2、G3、G4及BHT組之酸價皆隨著貯存天數增加而顯著上升。貯存7天後,G3組之酸價顯著低於CON、G1、G2及G4組,並於第28天顯著低於BHT組。各組之過氧化價及2-硫巴比妥酸值 (TBA value) 皆隨著貯存天數增加而顯著上升。第0天時,各組之過氧化價及TBA值無顯著差異;第14天開始,G3組顯著低於CON、G1、G2及G4組。與BHT相比,G3組於第7及14天有相近之過氧化價及TBA值,並於21天後顯著低於BHT組。p-茴香胺值及共軛雙烯含量於第0天時,各組之間無顯著差異,分別為4.65-4.70 unit及0.202-0.209%,各組皆隨著貯存天數增加而上升。貯存第7天開始,CON組之p-茴香胺值顯著高於G1、G2、G3、G4及BHT組。添加薑葉乙醇萃取液者,貯存第7及14天,p-茴香胺值依序為G4 > G1 > G2 > G3,於第28天時G1及G4達相近之數值;第21天開始,G3顯著低於BHT組。共軛雙烯含量則於貯存第14天開始,CON組顯著高於G1、G2、G3、G4及BHT組;添加薑葉乙醇萃取液者,貯存第7天開始G3組之共軛雙烯含量顯著最低,而G4組顯著最高 (P < 0.05);G3與BHT組於貯存第7天具有相近之共軛雙烯含量;第21及28天時,G3顯著低於BHT組。綜上所述,以60°C超音波萃取60 min所得之薑葉乙醇萃取液具有較佳之抗氧化能力,且添加1000 ppm時可顯著地抑制微波煉製雞油之氧化酸敗,維持其品質。


Oil is recognized as an important component in our diet. Oils or fats which contain high levels of unsaturated fatty acids such as chicken fat are more susceptible to oxidation. During storage, the oxidation of fat and oil might result in the losses of nutritional value, changes in color, texture and sensory properties. Synthetic antioxidants could retard the oxidation process; however, there is an increasing trend of replacing these synthetic antioxidants with the natural ones because of consumer’s demand. Ginger (Zingiber officinale, Zingiberaceae) is widely cultivated in the tropical areas. Large quantities of ginger leaves are produced during harvest of the ginger without further utilization. Many agricultural byproducts or wastes have been shown containing polyphenols with superior antioxidant effects. Therefore, the objective of the study was (1) to compare the extraction efficacy of ginger leaf between ultrasonic and shaking methods, (2) to evaluate the influences of different temperature (25°C, 45°C and 60°C) and time (20, 40 and 60 min) of ultrasonic extraction on the ginger leaf ethanol extracts, and (3) to evaluate the qualities of microwave-rendered chicken fat with addition of ginger leaf ethanol extracts during accelerated storage at 65°C. The results of the 1st part shows that the samples ultrasonically extracted at 25°C had significantly higher total phenolic content (TPC), total flavonoid content (TFC), DPPH radical scavenging activity (DPPH), ferrous iron chelating ability (FIC) and reducing power (RP) than the ones with shaking extraction for 20, 40 and 60 min (P < 0.05). Therefore, the ultrasonic method was selected to be applied for the further part of the experiment. The 2nd part of the study shows the TPC, TFC, FIC and RP of ultrasonic extraction were increased with increasing extraction temperature and time. The highest antioxidant activity was observed in the sample which extracted at 60°C for 60 min (P < 0.05). The DPPH was decreased with increasing extraction time especially at 45°C and 60°C. In the 3rd part of the study, the microwave-rendered chicken fat was added with 0 ppm (CON), 250 ppm (G1), 500 ppm (G2), 1000 ppm (G3), and 2000 ppm (G4) of the ginger leaf ethanol extract that extracted at 60°C for 60 min and then stored at 65°C for up to 28 days, whereas 200 ppm BHT was added for the controls. The results show that the acid values of all samples increased with storage time. The acid value of G3 was significantly lower than the ones of CON, G1, G2 and G4 after 7-day storage, and it was significantly lower than the one of BHT after 28-day storage. The peroxide value and TBA value of all samples were increased with storage time. At day 0, the difference between the samples was not significantly different. After 14-day storage, the lowest peroxide value and TBA value were observed in G3. After 7 and 14-day storage, G3 had peroxide value and TBA value comparable to that of addition of 200 ppm of BHT, and they were significantly lower than BHT after 21-day storage. At day 0, the p-anisidine value and conjugated diene content were not significantly different between the control and treated samples, and all samples were increased along with storage time. After 7 and 14-day storage, the p-anisidine value of G3 was the lowest, and was significantly lower after 21-day storage. After 14-day storage, the conjugated diene content of the control was significantly higher than G1, G2, G3, G4 and BHT. With addition of the ginger leaf ethanol extract, G3 showed the lowest conjugated diene content while G4 showed the highest one (P < 0.05). After 7-day storage, the p-anisidine value G3 was comparable to that of adding 200 ppm of BHT, and was significantly lower than the one of BHT after 21 and 28-day storage. Base on the results obtained, in conclusion, the ginger leaf extracted ultrasonically at 60°C for 60 min exhibited the highest antioxidant activity. Furthermore, the addition of 1000 ppm of ginger leaf ethanol extract could significantly retard the oxidation and maintain the qualities of microwaved-rendered chicken fat.

摘要 i
Abstract iii
表目次 viii
圖目次 ix
附錄目次 x
壹、前言 1
貳、文獻檢討 2
一、生薑及薑葉 2
(一) 生薑之簡介 2
(二) 生薑及薑葉之抗氧化特性及其他特性 2
二、超音波萃取 5
(一) 超音波之簡介 5
(二) 超音波萃取原理 5
(三) 影響超音波萃取之因素 8
三、動物油脂煉製 11
(一) 動物油脂 11
(二) 油脂煉製 11
四、油脂氧化及抗氧化劑 13
(一) 自氧化作用 (autoxidation) 13
(二) 抗氧化劑之應用 16
(三) 多酚類 (polyphenols) 抗氧化物質 18
參、材料與方法 22
一、薑葉萃取物 23
(一) 薑葉來源與前處理 23
(二) 薑葉乙醇萃取液之製備 23
(1) 震盪萃取 (shaking extraction) 23
(2) 超音波萃取 (ultrasonic extraction) 23
二、薑葉乙醇萃取液抗氧化特性之測定 23
(一) 總酚含量測定 (total phenolic content, TPC) 23
(二) 總類黃酮含量測定 (total flavonoid content, TFC) 24
(三) DPPH (1,1-diphenyl-2-picrylhydrazyl) 自由基清除能力測定 25
(四) 亞鐵離子螯合能力測定 (ferrous iron chelating ability, FIC) 25
(五) 還原能力 (reducing power, RP) 26
三、薑葉乙醇萃取液對微波煉製雞油於貯存期間品質之影響 27
(一) 油脂之製備 27
(二) 脂肪酸組成分析 27
(三) 一般成分分析 27
1. 水分 (moisture) 27
2. 粗脂肪 (crude fat) 27
3. 灰分 (ash) 27
4. 粗蛋白 (crude protein) 28
(四) 貯存試驗設計 28
四、貯存試驗分析項目 28
(一) 過氧化價 (peroxide value, POV) 28
(二) 酸價 (acid value, AV) 29
(三) 2-硫巴比妥酸值 (2-thiobarbituric acid value, TBA value) 30
(四) p-茴香胺值 (p-anisidine value, AnV) 31
(五) 共軛雙烯 (conjugated diene, CD) 31
五、統計分析 32
肆、結果與討論 33
一、超音波及震盪方式之比較 33
二、超音波萃取條件對薑葉乙醇萃取物抗氧化特性之影響 36
(一) 總酚及總類黃酮含量 36
(二) DPPH自由基清除能力 39
(三) 亞鐵離子螯合能力 41
(四) 還原能力 43
三、添加薑葉乙醇萃取液對微波煉製雞油加速貯存期間品質之影響 45
(一) 酸價 46
(二) 過氧化價 50
(三) TBA值 53
(四) p-茴香胺值 55
(五) 共軛雙烯 57
伍、結論 59
陸、參考文獻 60
柒、附錄 70


行政院衛生福利部食品藥物管理署。2009。餐飲業油炸油稽查管理原則。 網址:http://www.cgprdi.org.tw/functionalfood/statute/statute-2009/statute980724_5A.pdf。上網時間:2016/06/30。
行政院衛生福利部食品藥物管理署。2013。食品中脂肪酸之檢驗方法。
李欣蓉、李孟儒、吳祥雲。2012。禽類油脂應用於化妝品研發之探討。畜產研究 45:227–238。
林良昆。2013。不同煉製方法及製程中添加大蒜對動物油脂品質及貯存安定性之探討。國立國立中興大學碩士論文,台中。
林明毅。2014。大蒜皮中抗氧化成分之萃取及肉製品之應用。國立國立中興大學動物科學系碩士論文,台中。
施明智。1994。食物學原理。第352頁。藝軒圖書出版社,台北。
涂宗財、江國忠、陳鋼、王輝、陳媛、李志。2009。黃薑莖葉中總黃酮的提取工藝研究。食品工業科技 5:236–238.
張駟祥。1975。食用油脂化學。食品工業發展研究所,新竹。
陳彥璋。2013。超音波震盪與萃取溶劑對蒜皮萃取物抗氧化力之影響及其於豬肉餅之應用。國立國立中興大學動物科學系碩士論文,台中。
經濟部標準檢驗局。2005。CNS-2421 N5069。網址:http://www.cnsonline.com.tw/。上網時間:2016/06/24。
蔡正宏、蕭政弘。2013。台灣生薑生產模式與瓶頸。網址:http://www.tdais.gov.tw/files/web_articles_files/tdares/7945/2726.pdf。上網時間:2016/06/14。
鄭良益。2006。超音波降解製備不同分子量蒟蒻對大鼠腸道生理及血脂質之影響。靜宜大學食品營養學系碩士論文,台中。
駱海林、陸寧。2009。響應面法優化生薑中薑辣素的超音波提取工藝。包裝與食品機械27:54–65。
顏國欽。2012。食品油脂學。國立中興大學教務處出版組,台中。
Abdel-Hameed, E. S. S. (2009). Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food Chemistry, 114, 1271–1277.
Abou‐gharbia, H. A., Shehata, A., Youssef, M., & Shahidi, F. (1996). Oxidative stability of sesame paste (Tehina). Journal of Food Lipids, 3, 129–137.
Albu, S., Joyce, E., Paniwnyk, L., Lorimer, J. P., & Mason, T. J. (2004). Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrasonics Sonochemistry, 11, 261–265.
Altemimi, A., Choudhary, R., Watson, D. G., & Lightfoot, D. A. (2015). Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts. Ultrasonics Sonochemistry, 24, 247–255.
Annegowda, H. V., Bhat, R., Min-Tze, L., Karim, A. A., & Mansor, S. M. (2012). Influence of sonication treatments and extraction solvents on the phenolics and antioxidants in star fruits. Journal of Food Science and Technology, 49, 510–514.
Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S., & Robards, K. (2002). Methods for testing antioxidant activity. Analyst, 127, 183–198.
Anwar, F., Jamil, A., Iqbal, S., & Sheikh, M. A. (2006). Antioxidant activity of various plant extracts under ambient and accelerated storage of sunflower oil. Grasas y Aceites, 57, 189–197.
AOAC (1990). Official Methods of analysis. 15th ed. Association of official Analytical Chemistry, Virginia, U.S.A.
AOCS. (1994). Free Fatty Acid. Official method Ca 5a-40. Champaign, IL, USA: AOCS Press.
AOCS. (1994). Spectrophotometric Determination of Conjugated Dienoic Acid. Official method Ti 1a-64. Champaign, IL, USA: AOCS Press.
AOCS. (1997). Acid Value. Official method Cd 3d-63. Champaign, IL, USA: AOCS Press.
AOCS. (1997). Peroxide Value Acetic Acid-Isooctane Method. Official method Cd 8b-90. Champaign, IL, USA: AOCS Press.
AOCS. (1998). p-Anisidine Value. Official method Cd 18-90. Champaign, IL, USA: AOCS Press.
AOCS. (2009). 2-Thiobarbituric Acid Value Direct Method. Official method Cd 19-90. Champaign, IL, USA: AOCS Press.
Aybastıer, Ö., Işık, E., Şahin, S., & Demir, C. (2013). Optimization of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Industrial Crops and Products, 44, 558–565.
Bachari-Saleh, Z., Ezzatpanah, H., Aminafshar, M., & Safafar, H. (2013). The effect of refining process on the conjugated dienes in soybean oil. Journal of Agricultural Science and Technology, 15, 1185–1193.
Berlan, J., Trabelsi, F., Delmas, H., Wilhelm, A. M., & Petrignani, J. F. (1994). Oxidative degradation of phenol in aqueous media using ultrasound. Ultrasonics Sonochemistry, 1, S97–S102.
Boonkird, S., Phisalaphong, C., & Phisalaphong, M. (2008). Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab-and pilot-plant scale. Ultrasonics Sonochemistry, 15, 1075–1079.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28, 25–30.
Chan, E. W. C., Lim, Y. Y., & Omar, M. (2007). Antioxidant and antibacterial activity of leaves of Etlingera species (Zingiberaceae) in Peninsular Malaysia. Food Chemistry, 104, 1586–1593.
Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing—A review. Food Research International, 52, 243–261.
Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.
Chiavaro, E., Barnaba, C., Vittadini, E., Rodriguez-Estrada, M. T., Cerretani, L., & Bendini, A. (2009). Microwave heating of different commercial categories of olive oil: Part II. Effect on thermal properties. Food Chemistry, 115, 1393–1400.
Chukwumah, Y. C., Walker, L. T., Verghese, M., & Ogutu, S. (2009). Effect of frequency and duration of ultrasonication on the extraction efficiency of selected isoflavones and trans-resveratrol from peanuts (Arachis hypogaea). Ultrasonics Sonochemistry, 16, 293–299.
Chyau, C. C., Lin, Y. C., & Mau, J. L. (1997). Storage stability of deep-fried shallot flavoring. Journal of Agricultural and Food Chemistry, 45, 3211–3215.
Cook, N. C.,& Samman, S. (1996). Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of Nutritional Biochemistry, 7, 66–76.
Decker, E. A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry, 38, 674–677.
Di Mascio, P., Kaiser, S., & Sies, H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Archives of Biochemistry and Biophysics, 274, 532–538.
Dugan, L. R. (1961). Development and inhibition of oxidative rancidity in foods. Food Technology, 15, 10.
Dugasani, S., Pichika, M. R., Nadarajah, V. D., Balijepalli, M. K., Tandra, S., & Korlakunta, J. N. (2010). Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of Ethnopharmacology, 127, 515–520.
Duh, P. D. (1998). Antioxidant activity of burdock (Arctium lappa Linne): its scavenging effect on free-radical and active oxygen. Journal of the American Oil Chemists'' Society, 75, 455–461.
Ebrahimzadeh, M. A., Pourmorad, F., & Bekhradnia, A. R. (2008). Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. African Journal of Biotechnology, 7, 3188–3192.
Farag, R. S., Badei, A. Z. M. A., & El Baroty, G. S. A. (1989). Influence of thyme and clove essential oils on cottonseed oil oxidation. Journal of the American Oil Chemists’ Society, 66, 800–804.
Fedeli, D., Berrettini, M., Gabryelak, T., & Falcioni, G. (2004). The effect of some tannins on trout erythrocytes exposed to oxidative stress. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 563, 89–96.
Frega, N., Mozzon, M., & Lercker, G. (1999). Effects of free fatty acids on oxidative stability of vegetable oil. Journal of the American Oil Chemists'' Society, 76, 325–329.
Fulder, S. (1999). Ginger: the ultimate home remedy. Avery Publishing Group Inc., U.S.
Gómez-Alonso, S., Salvador, M. D., & Fregapane, G. (2004). Evolution of the oxidation process in olive oil triacylglycerol under accelerated storage conditions (40–60 oC). Journal of the American Oil Chemists'' Society, 81, 177–184.
Gordon, M. H. (1990). The mechanism of antioxidant action in vitro. Page 1–18 in Food Antioxidants. Springer, Netherlands.
Gramza‐michalowska, A. N. N. A., Sidor, A., & Hes, M. (2011). Herb extract influence on the oxidative stability of selected lipids. Journal of Food Biochemistry, 35, 1723–1736.
Gutteridge, J. M. (1994). Biological origin of free radicals, and mechanisms of antioxidant protection. Chemico-Biological Interactions, 91, 133–140.
Habib, F., & Shah, W. H. (2004). Utilization of potato peels extract as a natural antioxidant in soy bean oil. Food Chemistry, 85, 215–220.
Hamama, A. A., & Nawar, W. W. (1991). Thermal decomposition of some phenolic antioxidants. Journal of Agricultural and Food Chemistry, 39, 1063–1069.
Hayse, P. L., & Marion, W. W. (1973). Eviscerated yield, component parts, and meat, skin and bone ratios in the chicken broiler. Poultry Science, 52, 718–722.
Hemwimol, S., Pavasant, P., & Shotipruk, A. (2006). Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrasonics Sonochemistry, 13, 543–548.
Huang, W., Xue, A., Niu, H., Jia, Z., & Wang, J. (2009). Optimised ultrasonic-assisted extraction of flavonoids from Folium eucommiae and evaluation of antioxidant activity in multi-test systems in vitro. Food Chemistry, 114, 1147–1154.
Iqbal, S., & Bhanger, M. I. (2007). Stabilization of sunflower oil by garlic extract during accelerated storage. Food Chemistry, 100, 246–254.
Iqbal, S., Haleem, S., Akhtar, M., Zia-ul-Haq, M., & Akbar, J. (2008). Efficiency of pomegranate peel extracts in stabilization of sunflower oil under accelerated conditions. Food Research International, 41, 194–200.
Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., & Miles, N. J. (2002). Microwave heating applications in environmental engineering—a review. Resources, Conservation and Recycling, 34, 75–90.
Kellogg, E. W., & Fridovich, I. (1975). Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. Journal of Biological Chemistry, 250, 8812–8817.
Khokhar, S., & Apenten, R. K. O. (2003). Iron binding characteristics of phenolic compounds: some tentative structure–activity relations. Food Chemistry, 81, 133–140.
Kidak, R., & Ince, N. H. (2006). Ultrasonic destruction of phenol and substituted phenols: A review of current research. Ultrasonics Sonochemistry, 13, 195–199.
Kowalski, R., Kowalska, G., Jamroz, J., Nawrocka, A., & Metyk, D. (2015). Effect of the ultrasound-assisted preliminary maceration on the efficiency of the essential oil distillation from selected herbal raw materials. Ultrasonics Sonochemistry, 24, 214–220.
Labuza, T. P., & Dugan Jr, L. R. (1971). Kinetics of lipid oxidation in foods. Critical Reviews in Food Science & Nutrition, 2, 355–405.
Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnology Advances, 28, 500–518.
Leeson, S., & Summers, J. D. (1980). Production and carcass characteristics of the broiler chicken. Poultry Science, 59, 786–798.
Liu, H. R., & White, P. J. (1992). Oxidative stability of soybean oils with altered fatty acid compositions. Journal of the American Oil Chemists’ Society, 69, 528–532.
Lopes, G. K., Schulman, H. M., & Hermes-Lima, M. (1999). Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochimica et Biophysica Acta (BBA)-General Subjects, 1472, 142–152.
Ma, Y. Q., Chen, J. C., Liu, D. H., & Ye, X. Q. (2009). Simultaneous extraction of phenolic compounds of citrus peel extracts: Effect of ultrasound. Ultrasonics Sonochemistry, 16, 57–62.
Ma, Y. Q., Ye, X. Q., Fang, Z. X., Chen, J. C., Xu, G. H., & Liu, D. H. (2008). Phenolic compounds and antioxidant activity of extracts from ultrasonic treatment of Satsuma mandarin (Citrus unshiu Marc.) peels. Journal of Agricultural and Food Chemistry, 56, 5682–5690.
Mahgoub, S. E., & Hudson, B. J. (1985). Inhibition of the pro-oxidant activity of copper by primary antioxidants in lard. Food Chemistry, 16, 97–101.
Mason, T. J. (2009). Sonochemistry-beyond synthesis. Education in Chemistry, 46, 140–144.
Milić, B. L., Djilas, S. M., & Čanadanović-Brunet, J. M. (1998). Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chemistry, 61, 443–447.
Miyashita, K., & Takagi, T. (1986). Study on the oxidative rate and prooxidant activity of free fatty acids. Journal of the American Oil Chemists’ Society, 63, 1380–1384.
Oyaizu, M. (1986). Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44, 307–315.
Paniwnyk, L., Beaufoy, E., Lorimer, J. P., & Mason, T. J. (2001). The extraction of rutin from flower buds of Sophora japonica. Ultrasonics Sonochemistry, 8, 299–301.
Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., & Núñez, M. J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53, 2111–2117.
Pokorný, J., Schmidt, S., & Parkányiová, J. (2005). Ultraviolet-visible spectrophotometry in the analysis of lipid oxidation. Analysis of Lipid Oxidation, 17–39.
Rodríguez-Rojo, S., Visentin, A., Maestri, D., & Cocero, M. J. (2012). Assisted extraction of rosemary antioxidants with green solvents. Journal of Food Engineering, 109, 98–103.
R?dtjer, A., Skibsted, L. H., & Andersen, M. L. (2006). Antioxidative and prooxidative effects of extracts made from cherry liqueur pomace. Food Chemistry, 99, 6–14.
Roy, L. G., Arabshahi-Delouee, S., & Urooj, A. (2010). Antioxidant efficacy of mulberry (Morus indica L.) leaves extract and powder in edible oil. International Journal of Food Properties, 13, 1–9.
Salariya, A. M., & Habib, F. (2003). Antioxidant activity of ginger extract in sunflower oil. Journal of the Science of Food and Agriculture, 83, 624–629.
Salta, F. N., Mylona, A., Chiou, A., Boskou, G., & Andrikopoulos, N. K. (2007). Oxidative stability of edible vegetable oils enriched in polyphenols with olive leaf extract. Food Science and Technology International, 13, 413–421.
Santos-Fandila, A., Camino-Sánchez, F. J., & Zafra-Gómez, A. (2014). Degradation Markers in Nutritional Products. A Review. Austin Journal of Analytical and Pharmaceutical Chemistry, 1, 1–5.
Semb, T. N. (2012). Analytical Methods for Determination of the Oxidative Status in Oils. Master thesis. Norwegian University of Science and Technology, Trondheim.
Sherwin, E. R. (1978). Oxidation and antioxidants in fat and oil processing. Journal of the American Oil Chemists’ Society, 55, 809–814.
Sheu, K. S., & Chen, T. C. (2002). Yield and quality characteristics of edible broiler skin fat as obtained from five rendering methods. Journal of Food Engineering, 55, 263–269.
Singh, G., Kapoor, I. P. S., Singh, P., de Heluani, C. S., de Lampasona, M. P., & Catalan, C. A. (2008). Chemistry, antioxidant and antimicrobial investigations on essential oil and oleoresins of Zingiber officinale. Food and Chemical Toxicology, 46, 3295–3302.
Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178.
Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 579, 200–213.
Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science and Technology, 21, 323–331.
Stoilova, I., Krastanov, A., Stoyanova, A., Denev, P., & Gargova, S. (2007). Antioxidant activity of a ginger extract (Zingiber officinale). Food Chemistry, 102, 764–770.
Suja, K. P., Abraham, J. T., Thamizh, S. N., Jayalekshmy, A., & Arumughan, C. (2004). Antioxidant efficacy of sesame cake extract in vegetable oil protection. Food Chemistry, 84, 393–400.
Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14, 2167–2180.
Taga, M. S., Miller, E. E., & Pratt, D. E. (1984). Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists’ Society, 61, 928–931.
Toma, M., Vinatoru, M., Paniwnyk, L., & Mason, T. J. (2001). Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrasonics Sonochemistry, 8, 137–142.
Tompkins, C., & Perkins, E. G. (1999). The evaluation of frying oils with the p-anisidine value. Journal of the American Oil Chemists'' Society, 76, 945–947.
Tsao, R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients, 2, 1231–1246.
Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics sonochemistry, 8, 303–313.
Viuda‐Martos, M., Ruiz Navajas, Y., Sánchez Zapata, E., Fernández‐López, J., & Pérez‐Álvarez, J. A. (2010). Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour and Fragrance Journal, 25, 13–19.
W¹sowicz, E., Gramza, A., Hes, M., Jeleñ, H. H., Korczak, J., & Malecka, M. (2004). Oxidation of lipids in food. Polish Journal of Food and Nutrition Sciences, 13, 87–100.
Wang, J., Sun, B., Cao, Y., Tian, Y., & Li, X. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106, 804–810.
Weishaupt, K. R., Gomer, C. J., & Dougherty, T. J. (1976). Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor. Cancer research, 36, 2326–2329.
Yang, B., Zhao, M., Shi, J., Yang, N., & Jiang, Y. (2008). Effect of ultrasonic treatment on the recovery and DPPH radical scavenging activity of polysaccharides from longan fruit pericarp. Food Chemistry, 106, 685–690.
Yokozawa, T., Cho, E. J., Hara, Y., & Kitani, K. (2000). Antioxidative activity of green tea treated with radical initiator 2, 2''-azobis (2-amidinopropane) dihydrochloride. Journal of Agricultural and Food Chemistry, 48, 5068–5073.
Zhang, G., He, L., & Hu, M. (2011). Optimized ultrasonic-assisted extraction of flavonoids from Prunella vulgaris L. and evaluation of antioxidant activities in vitro. Innovative Food Science and Emerging Technologies, 12, 18–25.
Zhang, L., Yin, B., & Rui, H. (2013). Effects of microwave rendering on the yield and characteristics of chicken fat from broiler abdominal fat tissue. Journal of Food Science and Technology, 50, 1151–1157.
Zhou, K., Yin, J. J., & Yu, L. L. (2006). ESR determination of the reactions between selected phenolic acids and free radicals or transition metals. Food Chemistry, 95, 446–457.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top