跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:嚴偉珉
研究生(外文):Wei-Min Yan
論文名稱:正交分頻多工系統運用非互斥分割部分傳輸序列技術結合線性區塊碼來降低峰均功率比值
論文名稱(外文):Combination of Non-Disjoint Sub-Block Partition with Linear Block Codes for PAPR Reduction in OFDM System
指導教授:陳後守
指導教授(外文):Houshou Chen
口試委員:梁新潁楊谷章
口試委員(外文):Hsin-Ying LiangGuu-Chang Yang
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:65
中文關鍵詞:峰均功率比值非互斥分割線性區塊碼正交分頻多工
外文關鍵詞:PAPRNON-DISJOINTLINEAR BLOCK CODEOFDM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在正交分頻多工系統(Orthogonal Frequency Division Multiplexing , OFDM)中有一個的缺點就是峰均功率比值(Peak-To-Average Power ratio, PAPR)過高,在同相位的子載波相加時,所有符元(symbol)功率會互相疊加,這會使正交分頻多工訊號有過高峰均功率比值,目前有很多方法可以降低峰均功率比,本篇論文是採用部分傳輸序列(Partial Transmit Sequence, PTS)做為系統的主架構來降低PAPR。

在本篇論文中,運用以前提過的非互斥子區塊的部分傳輸序列在M-QAM正交分頻多工系統,再結合線性區塊碼作為相位因子,透過引進格雷碼(Gray code)的生長概念,將線性區塊碼採用並列(Parallel)或串列(Series)的方式生長,此方法跟傳統部分傳輸序列相比,有較優的峰均功率比值,且具有較低的運算複雜度。
In this thesis, we propose combination of a modified PTS algorithm by partitioning an OFDM block into non-disjoint OFDM sub-block with linear block codes as phase factors. Through the concept of Gray code, the linear block codes are grown in parallel and serial, compare conventional PTS with our algorithms, our algorithms which are low computational complexity for searching phase factors, and simulation results show that the modified PTS with a non-disjoint partition achieves an obvious improvement of PAPR reduction. In addition, the side information provide extra error-correction property.
Chapter 1 前言 1
Chapter 2 簡介 3
2.1 正交分頻多工系統 3
2.2 峰均功率比值 7
2.3 部分傳輸序列 10
Chapter 3互斥分割與非互斥分割子區塊之部分傳輸序列 12
3.1 相位因子擾動 13
3.2 傳統互斥子區塊資料劃分方式 16
3.3 非互斥分割子區塊部分傳輸序列 (MPTS) 17
3.3.1 MPTS-I 18
3.3.2 MPTS-II 29
3.3.3 MPTS-III 33
Chapter 4 結合非互斥分割子區塊與線性區塊碼模擬結果與討論 37
4.1 運用並列與串列生長BCH碼 37
4.1.1 Parallel in BCH code 40
4.1.2 Series in BCH code 42
4.1.3 計算複雜度分析 44
4.2 模擬結果與討論 45
4.2.1 並列生長模擬圖 46
4.2.2 串列生長模擬圖 52
4.2.3 延伸64-QAM模擬圖 59
Chapter 5 結論 61
參考文獻 62
[1] L.J. Cimini, Jr.,“Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,”IEEE Tr-ans. Commun.,vol. 33, pp. 665-675, July 1985.

[2] J.A.C. Bingham,“Multicarrier modulation for data a transmission: an idea whose time has come,” IEEE Commun. Magazine, vol. 28 pp. 5-14,may 1990.

[3] S. H. Han and J. H. Lee,“An overview of peak-to-average power ratio reduction techniques for multicarricer transmission,”IEEE Wireless Commun., vol. 12, no. 2, pp. 56-65, Apr. 2005.

[4] T. Jiang, and Y. Wu,“An overview : Peak-to-average power ratio reduction techniques for OFDM signals,” IEEE Trans. Broadcast., vol. 54,no. 2, pp. 257-268, June 2008.


[5] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding Scheme for reduction of peak to mean envelope power ratio of multicarrier transmission scheme,”Elect. Lett., vol 30, pp. 2098-2099, Dec. 1994.

[6] J. A. Davis and J. Jedwab,“Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,”IEEE Trans. Inform. Theory, vol. 45, pp. 2397-2417, Nov. 1999.


[7] K.G. Paterson,“Generalized Reed-Muller code and power control in OFDM modulation,”IEEE Trans. Inform. Theory, vol. 46, pp. 104-120, Jan. 2000.

[8] R. W. Bauml, R. F. H. Fischer, and J. B. Huber,“Reducing the peak-to-average power ratio of multicarrier modulation by selective mapping”Electron. Lett., vol. 32, no. 22, pp. 2056-2057, 1996.

[9] M. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber,“SLM peak-power reduction without explicit side information,”IEEE Commun. Lett., vol. 5, pp. 239-241, Jun. 2001.

[10] H. Chen and H. Liang,“Combined selective mapping and binary cyclic codes for PAPR reduction in OFDM systems,”IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3524-3528, Oct. 2007.
[11] S. H. Muller and J.B. Huber,“OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,”Electron. Lett., vol. 33, no.5, pp. 368-369, 1997.

[12] C. Tellambura,“Improved phase factor computation for the PAPR reduction of an OFDM signal using PTS,”IEEE Commun. Lett., vol. 5, no. 4, pp. 135-137, Apr. 2001.

[13] X. Qi, Y. Li and H. Hung,“A low complexity PTS scheme based on tree for PAPR reduction,”IEEE Commun. Lett., vol. 16, pp. 1486-1488, Sep. 2012.

[14] K. H. Kim,“On the shift value set of cyclic shifted sequences for PAPR reduction in OFDM systems,”IEEE Trans. Broadcast., vol. 62, no. 2,pp. 496-500, Jun. 2016.

[15] P. Y. Chen, H. Chen and J. J. Wang ,“A low complexity PTS technique for PAPR reduction in OFDM systems,”ISPACS 2009, pp. 1-4, Feb. 2009.

[16] K. C. Chung, H. Chen and T. Y. Yang ,“Low complexity PTS algorithms with error correction capability in OFDM systems,”ICUFN 2015, pp. 254-256, Jul. 2015.

[17] H. Chen and H. Liang,“PAPR reduction of OFDM signals using partial transmit sequences and Reed-Muller codes,”IEEE Commun. Lett., vol. 11, no. 6, pp. 528-530, June 2007.

[18] L. J. Cimini, Jr. and N. R. Sollenberger,“Peak-average power ratio reduction of an OFDM signal using partial transmit sequences,”IEEE Commun. Lett., vol. 4, no. 3, pp. 86-88,Mar. 2000.

[19] Y.-R. Tsai and S.J. Huang,“PTS with non-uniform phase factors for PAPR reduction in OFDM systems,”IEEE Commun. Lett., vol. 12, no. 1, pp. 20-22, Jan. 2008.

[20] H. Chen, J. J. Wang, C. E. Tu and H. W. Chang,“PAPR Reduction in OFDM systems based on modified PTS algorithm with non-disjoint partition,”IEEE PIMRC 2009, pp. 212-216, Sep. 2009.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊