跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/06 17:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡建材
研究生(外文):Chien-Tsai Tsai
論文名稱:自動化車牌辨識系統
論文名稱(外文):Automatic License Plate Recognition system
指導教授:林道通
指導教授(外文):Daw-Tung Lin
學位類別:碩士
校院名稱:中華大學
系所名稱:資訊工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
中文關鍵詞:車牌辨識型態學類神經網路模糊理論採用類可行性成功率辨識率角度
外文關鍵詞:License Plate RecognitionMorphologyNeural NetworkFuzzysystemdata
相關次數:
  • 被引用被引用:5
  • 點閱點閱:528
  • 評分評分:
  • 下載下載:152
  • 收藏至我的研究室書目清單書目收藏:1
本論文是以可在不限制任何環境的即時系統,並且能快速且準確的辨識出車牌為前提,提出即時車牌自動辨識系統。之前也有許多相關類似的系統被提出,如在固定或單純背景的情況、一定亮度下的環境、部份車牌的辨識等,大部份的系統都是採用辨識圖片的方式,而我們現今所提的系統是可辨識在一定角度和大小範圍內所有種類的車牌,其背景和光源是沒有任何限制的,並且在以即時的方式來做辨識。我們所採用的方式主要分成三大步驟:即時影像截取、車牌定位與車牌辨識。在即時影像的部份是採用現有且通用的截取方式,以每秒28張圖片來做資料的匯入,但考慮到資料處理的速度和影像的重覆性,故以每兩張才進行一次處理,所以處理的速度約為每秒14張影像。在車牌定位的部份,先將彩色影像轉成灰階,再利用型態學的侵蝕與擴張的方式和一些判斷條件,如此可以不考慮光源和顏色的影響來找出影像中所有類型車牌的位置。在辨識的部份,採用類神經網路結合模糊理論來提高其辨識率。本論文的重點部份在於藉由提高車牌定位的成功率,來增加車牌的辨識率,經實驗的結果得到滿意的辨識率,証明此系統的可行性。
A real-time automatic license plate recognition system is proposed in this paper to identify the license plate quickly and accurately in the unrestricted environment, e.g. different lighting conditions and various vehicles. The proposed system mainly includes two procedures: license plate locating and character recognition. In license plates locating procedure, we convert the color image into grey level data first. Then apply the morphology technique to find out the location of license plate. The objective of the research is to increase the recognition rate of license plates and to improve the success rate of license plate locating. We demonstrate the feasibility of this system of this system through extensive experiments. The correct plate location rate and characters recognition achieves 96.63% and 93.20%, respectively.
1 Introduction and Literature Survey 1
1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.1 License Plate Locating . . . . . . . . . . . . . . . . . . 3
1.3.2 Character Recognition . . . . . . . . . . . . . . . . . . 4
1.4 Guide of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 5
2 System Architecture 6
3 License Plate Location 9
4 License Plate Recognition 16
4.1 Characters Segmentation . . . . . . . . . . . . . . . . . . . . . 16
4.2 Back Propagation Neural Network . . . . . . . . . . . . . . . . 19
4.2.1 BPNN Structure . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Back Propagation Learning Algorithm . . . . . . . . . 23
4.3 Character Recognition . . . . . . . . . . . . . . . . . . . . . . 24
5 Experimental Results 28
6 Conclusion and Future Work 34
[1] C. T. Hsieh, et al. “Multiple License Plate Detection for Complex Background.” Proc. of the 19th International Conference on Advanced Information Networking and Applications, pp. 389- 392, 2005.
[2] S. L. Chang, et al. “Automatic license plate recognition.” IEEE Transactions on Intelligent Transportation Systems, Vol. 5 (1), pp. 42- 53, 2004.
[3] V.S.L. Nathan, et al. “New approaches for license plate recognition system.” Proc. of International Conference on Intelligent Sensing and Information Processing, pp. 149- 152, 2004.
[4] F. Aghdasi and H. Ndungo. “Automatic license plate recognition system.” IEEE AFRICON, Vol. 1, pp. 45- 50, 2004.
[5] C. A. Rahman, et al. “A real time vehicle's license plate recognition system.” Proc. of IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 163 – 166, 2003.
[6] M. J. Ahmed, et al. “License plate recognition system.” Proc. of the 10th IEEE International Conference on Electronics, Circuits and Systems, Vol. 2, pp. 898- 901, 2003.
[7] M. Sarfraz, et al. “Saudi Arabian license plate recognition system.” Proc. of International Conference on Geometric Modeling and Graphics, pp. 36 – 41, 2003.
[8] Y. L. Chang and F. H. Cheng. “An automatic and real-time recognition system for vehicle license plate by systematic approach.” Department of Computer Science and Information Engineering, Chung-Hua University, 2002.
[9] H. Bai and C. Liu. “A hybrid license plate extraction method based on edge statistics and morphology.” Proc. of the 17th International Conference on Pattern Recognition, Vol. 2, pp. 831- 834, 2004.
[10] M. Yu and Y. D. Kim. “An approach to Korean license plate recognition based on vertical edge matching.” IEEE International Conference on Systems, Man, and Cybernetics, Vol. 4, pp. 2975 – 2980, 2000.
[11] J. W. Hsieh, et al. “Morphology-based license plate detection in images of differently illuminated and oriented cars.” Journal of Electronic Imaging, Vol. 11, No. 4, pp. 507-516, 2002.
[12] G. Cao, et al. “An adaptive approach to vehicle license plate localization.” The 29th Annual Conference of the IEEE, Industrial Electronics Society, Vol. 2, pp. 1786- 1791, 2003.
[13] R. Zunino and S. Rovetta. “Vector quantization for license-plate location and image coding.” IEEE Transactions on Industrial Electronics, Vol. 47 (1), pp. 159-167, 2000.
[14] X. Lu. et al. “Vehicle license plate character recognition.” Proc. of the International Conference on Neural Networks and Signal Processing, Vol. 2, pp. 1066- 1069, 2003.
[15] J. F. Xu, et al. “Car license plate extraction using color and edge information.” Proc. of International Conference on Machine Learning and Cybernetics, Vol. 6, pp. 3904- 3907. 2004.
[16] N. Otsu. “A Threshold Selection Method from Gray-Level Histograms.” IEEE Transactions on Systems, Man and Cybernetics, Vol.9, pp.62-66, 1979.
[17] I. Paliy, et al. “Approach to recognition of license plate numbers using neural networks.” Proc. of IEEE International Joint Conference on Neural Networks, Vol. 4, pp. 2965- 2970, 2004.
[18] T. Nukano, et al. “Vehicle license plate character recognition by neural networks.” Proc. of International Symposium on Intelligent Signal Processing and Communication Systems, pp. 771- 775, 2004.
[19] V. Seetharaman, et al. “License plate recognition system using hybrid neural networks.” Proc. NAFIPS '04, IEEE Annual Meeting of the Fuzzy Information, Vol. 1, pp. 363- 366, 2004.
[20] V. Koval, et al. “Smar t license plate recognition system based on image processing using neural network.” Proc. of the Second IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pp. 123- 127, 2003.
[21] K. H. Lee, et al. “Geometric structure analysis of document images: a knowledge-based approach.” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22 (11), pp. 1224 – 1240, 2000.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top