跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/10 04:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張少源
研究生(外文):Chang, Shao-Yuan
論文名稱:貝氏方法在多選題排序上的應用
論文名稱(外文):Bayesian Ranking Responses in Multiple-Choice Questions
指導教授:王秀瑛王秀瑛引用關係
指導教授(外文):Wang, Hsiu-Ying
學位類別:碩士
校院名稱:國立交通大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2010
畢業學年度:97
語文別:英文
論文頁數:25
中文關鍵詞:狄氏先驗貝氏估計量單選問題多選問題調查
外文關鍵詞:Dirichlet PriorBayes estimatorsingle response questionmultiple responses questionsurvey
相關次數:
  • 被引用被引用:0
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
在許多調查研究中,問卷調查是一個很重要的工具。許多文獻上對於可複選的問題分析不如研究單選問題那麼的深入。Wang (2008a)在frequentist 的架構下,提出針對複選題作排序的方法。但是在實際的情況下,對於各個選項也許存在著事前分配,所以建立新的方法結合過去資料與新的資料作排序在問卷調查中是必要的課題。在本篇研究中,我們根據貝式多重檢定的方法,藉由控制後驗的錯誤發生率來得到在貝式架構下的排序。除此之外,我們也將用模擬的方法去比較這些方法的差異及恰當的拒絕區域。
In many studies, the questionnaire is an important tool for surveying. In the literature, the analyses of multiple-choice questions are not established as in depth as those for single-choice question. Wang (2008a) proposed several methods for ranking the Responses in Multiple-Choice Questions under the usual frequentist setup.However in many situations, there may exist prior information for the ranks of the responses, therefore, establishing a methodology combining the update survey data and the past information for ranking the responses is an essential issue for the
questionnaire data analysis. In this paper, we based on several Bayesian multiple testing procedures to develop the Bayesian ranking methods by controlling the posterior expected false discovery rate. In addition, a simulation study is conducted to make a comparison of these approaches and to derive the appropriate rejection region for the testing.
1、 Introduction…………………………………………………… 1
2、 Model ………………………………………………………… 4
2.1 Model Selection ……………………………………………… 5
3、 Testing Approach ……………………………………………… 7
3.1 Multiple Testing……………………………………………… 7
3.2 Testing Procedures …………………………………………… 10
4、 Ranking Approach and Ranking Consistency……………… 11
4.1 Penalty Score ………………………………………………… 12
5、 Simulation Result…………………………………………… 13
5.1 Rejection Rate ………………………………………………… 13
6、 A Real Data Example ………………………………………… 16
7、 Conclusion …………………………………………………… 19
8、 Appendix ……………………………………………………… 19
Reference …………………………………………………………… 21
[1] Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rates: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B (57), 289V300.
[2] Agresti, A. and Liu, I.M. (1999) Modeling a categorical variable allowing arbitrarily many category choices. Biometrics 55, 936-943.
[3] Agresti, A. Liu, I.M. (2001) Strategies for modeling a categorical variable allowing multiple category choices. Sociological Methods and Research 29, 403V434.
[4] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (2nd ed.), New York: Springer-Verlag.
[5] Bilder, C. R., Loughin, T. M.and Nettleton, D. (2000) Multiple marginal inde-pendence testing for pick any/c variables. Comm.Statist.Simulation Comput., 29(4), 1285-1316.
[6] Decady, Y. J. and Thomas, D. H. (2000). A simple test of association for contingency tables with multiple column responses. Biometrics 56, 893-896.
[7] Gopalan, R. and Berry, D. A. (1998). Bayesian multiple comparisons using Dirichlet process priors. Journal of the American Statistical Association 93, 1130V1139.
[8] Do, K., Muller, P. and Tang, F. (2005). A Bayesian mixture model for differential gene expression. J. R. Stat. Soc. C., 54, 627V644.
[9] Pammer, S., Fong, D. K. H. and Arnold, S. F. (2000). Forecasting the Penetration of a New Product: A Bayesian Approach. Journal of Business and Economic Statistics, 18, no. 4, 428-435.
[10] Gonen, M., Westfall, P. H. and Johnson, W. O. (2003). Bayesian Multiple Testing for Two-Sample Multivariate Endpoints. Biometrics, 59, 76-82.
[11] Loughin, T. M. and Scherer, P. N. (1998). Testing for association in contingency tables with multiple column responses. Biometrics 54, 630-637.
[12] Muller P, Parmigiani G, and Rice K. (2007). ”FDR and Bayesian decision rules.” In Bayesian Statistics 8. ( Bernardo, J. et al. ed.) Oxford University Press.
[13] Miranda-Moreno, L. F., Labbe, A. and Fu, L. (2007). Bayesian multiple testing procedures for hotspot identification. Accident Analysis and Prevention, 39, 1192V1201.
[14] Muller, P., Parmigiani, G., Robert, C. and Rousseau, J. (2004). Optimal sample size for multiple testing: The case of gene expression microarrays. Journal of the American Statistical Association, 99, no.468, 990-1001.
[15] Scott, J. (2009). ”Nonparametric Bayesian multiple testing for longitudinal performance stratification.” Annals of Applied Statistics.
[16] Scott, J.G. and Berger, J.O. (2006). An exploration of aspects of Bayesian multiple testing. J. Stat. Plann. Inference 136, no. 7, 2144V2162.
[17] Umesh, U. N. (1995). Predicting nominal variable relationships with multiple responses. Journal of Forecasting 14, 585-596.
[18] Wang, H. (2008a). Ranking responses in multiple responses questions. Journal of Applied Statistics, 35, 465-474.
[19] Wang, H. (2008b) Exact confidence coefficients of simultaneous confidence intervals for multinomial proportions. Journal of Multivariate Analysis, 99, 896-911.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top