|
[1]D.B. Spalding, H.C. Hottel, S.L. Bragg, A.H. Lefebvre, D.G. Shepherd, and A.C. Scurlock (1963), The Art of Partial Modeling, Symposium (International) on Combustion 9(1), 833-843.
[2]J.M. Beer and N.A. Chigier, Combustion Aerodynamics (Chapter 7), Wiley Press, 1972.
[3]S.R. Turns, An Introduction to Combustion: Concepts & Applications 2nd ed., McGraw-Hill, 1999.
[4]M.D. Durbin, M.D. Vangsness, D.R. Ballal, and V.R. Katta (1996), Study of Flame Stability in a Step Swirl Combustor, Journal of Engineering for Gas Turbines and Power 118(2), 308-315.
[5]R. Weber (1996), Scaling Characteristics of Aerodynamics, Heat Transfer, and Pollutant Emissions in Industrial Flame, Symposium (International) on Combustion 26(2), 3343-3354.
[6]J.P. Smart, D.J. Morgan, and P.A. Roberts (1992), The Effect of Scale on the Performance of Swirl Stabilized Pulverized Coal Burners, Symposium (International) on Combustion 24(1), 1365-1372.
[7]J.P. Smart and D.J. Morgan (1994), Exploring the Effects of Employing Different Scaling Criteria on Swirl Stabilized Pulverized Coal Burner Performance, Combustion Science and Technology 100, 331-343.
[8]R. Weber and F. Breussin (1998), Scaling Properties of Swirling Pulverized Coal Flames: from 180 kW to 50 MW Thermal Input, Symposium (International) on Combustion 27(2), 2957-2964.
[9]T.C.A. Hsieh, W.J.A. Dahm, and J.F. Driscoll (1998), Scaling Laws for NOx Emission Performance of Burners and Furnace from 30 kW to 12 MW, Combustion and Flame 114, 54-80.
[10]J.A. Cole, T.P. Parr, N.C. Widmer, K.J. Wilson, K.C. Schadow, and W.M.R. Seeker (2000), Scaling Criteria for the Development of an Acoustically Stabilized Dump Combustor, Proceedings of the Combustion Institute 28(1), 1297-1304.
[11]M. Sadakata and Y. Hirose (1994), Scaling Law for Pollutant Emission from a Combustion Furnace, Fuel 73(8), 1338-1342.
[12]A.D. Al-Fawaz, L.M. Dearden, J.T. Hedley, M. Missaghi, M. Pourkashanian, A. Williams, and L.T. Yap (1994), NOx Formation in Geometrically Scaled Gas-Fired Industrial Burner, Symposium (International) on Combustion 25(1), 1027-1034.
[13]R.K. Cheng, D.T. Yegian, M.M. Miyasato, G.S. Samuelsen, C.E. Benson, R. Pellizzari, and P. Loftus (2000), Scaling and Development of Low-Swirl Burners for Low-Emission Furnace and Boilers, Proceedings of the Combustion Institute 28, 1305-1313.
[14]F.P. Ricou and D.B. Spalding (1961), Measurements of Entrainment by Axisymmetrical Turbulent Jets, Journal of Fluid Mechanics 11, 21-32.
[15]W.R. Hawthorne, D.S. Weddell, and H.C. Hottel (1948), Mixing and Combustion in Turbulent Gas Jets, Proceedings of the Combustion Institute 3(1), 266-288.
[16]S. Kumar, P.J. Paul, and H.S. Mukunda (2005), Investigations of the Scaling Criteria for a Mild Combustion Burner, Proceedings of the Combustion Institute 30(2), 2613-2621.
[17]S. Yon, J-C Sautet, and T. Boushaki (2012), Effects of Burned Gas Recirculation on NOx Emissions from Natural Gas-Hydrogen-Oxygen Flames in a Burner with Separated Jets, Energy & Fuels 26(8), 4703-4711.
[18]H.A. Becker, D. Liang, and Visible (1978), Length of Vertical Free Turbulent Diffusion Flames, Combustion and Flame 32, 115-137.
[19]M.A. Delichatsios (1993), Transition from Momentum to Buoyancy-Controlled Turbulent Jet Diffusion Flames and Flame Height Relationships, Combustion and Flame 92(4), 349-364.
[20]R.W. Bilger (1976), Turbulent Jet Diffusion Flames, Progress in Energy and Combustion Science 1, 87-109.
[21]M. Kim, J. Oh, and Y. Yoon (2011), Flame Length Scaling in a Non-premixed Turbulent Diluted Hydrogen Jet with Coaxial Air, Fuel 90(8), 2624-2629.
[22]H. Eickhoff (1982), Turbulent Hydrocarbon Jet Flames, Progress in Energy and Combustion Science 8(2), 159-169.
[23]G. Heskestad (1999), Turbulent Jet Diffusion Flames: Consolidation of Flame Height Data, Combustion and Flame 118(1-2), 51-60.
[24]B.J. McBride, and M.S. Gordon (1996), Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. User's Manual and Program Description. Available: http://www.grc.nasa.gov/WWW/CEAWeb/RP-1311P2.htm
[25]B.J. McBride and M.S. Gordon (1996), Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis. Available: http://www.grc.nasa.gov/WWW/CEAWeb/RP-1311.htm
[26]D. Goodwin, CANTERA: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Caltech, Pasadena, 2009. Available: http://code.google.com/p/cantera G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, Jr., V.V. Lissianski, and Z. Qin. Available: http://www.me.berkeley.edu/gri_mech/
[27]ANSYS Fluent Release 13.0 User Guide, ANSYS, Inc., 2010.
[28]ANSYS Fluent Release 13.0 Theory Guide, ANSYS, Inc., 2010
[29]V. Yakhot, and S.A. Orszag (1986), Renormalization Group Analysis of Turbulence. I. Basic Theory, J. Scientfic Computing 1, 1-51.
[30]V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, and C.G. Speziale (1992), Development of Turbulence Models for Shear Flows by a Double Expansion Technique, Phys Fluid A-Fluid 4, 1510-1520.
[31]W. Rodi, Influence of Buoyancy and Rotation on Equations for the Turbulent Length Scale, 2nd Symposium on Turbulent Shear Flows, London, England, July 2-4, 1979.
[32]D.L. Baulch, D.D. Drysdall, D.G. Horne, and A.C. Lloyd, Evaluated Kinetic Data for High Temperature Reactions, Butterworth, 1973.
[33]S.V. Patankar, and D.B. Spalding (1972), A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, International Journal of Heat and Mass Transfer 15(10), 1787-1806.
[34]D.C. Wilcox, Turbulence Modeling for CFD 1st ed., DCW Industries, Inc., 1998.
[35]W.P. Jones, and R.P. Lindstedt (1988), Global Reaction Schemes for Hydrocarbon Combustion, Combustion and Flame 73(3), 233-249.
[36]B.F. Magnussen, and B.H. Hjertager (1977), On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion, Symposium (International) on Combustion 16(1), 719-729.
|